已知函數(shù)f(x)=x2-2ax+5.(a>1)
(1)若f(x)的定義域和值域均是[1,a],求實(shí)數(shù)a的值;
(2)若f(x)在區(qū)間(-∞,2]上是減函數(shù),且對任意的x∈[1,a+1],總有-4≤f(x)≤4,求實(shí)數(shù)a的取值范圍.
解:(1)∵函數(shù)f(x)=x
2-2ax+5(a>1),∴f(x)開口向上,對稱軸為x=a>1,…
∴f(x)在[1,a]是單調(diào)減函數(shù),…
∴f(x)的最大值為f(1)=6-2a;f(x)的最小值為f(a)=5-a
2…
∴6-2a=a,且5-a
2=1
∴a=2…
(2)函數(shù)f(x)=x
2-2ax+5=(x-a)
2+5-a
2.開口向上,對稱軸為x=a,
∵f(x)在區(qū)間(-∞,2]上是減函數(shù),對稱軸大于等于2,
∴a≥2,a+1>3,
f(x)在(1,a)上為減函數(shù),在(a,a+1)上為增函數(shù),
f(x)在x=a處取得最小值,f(x)
min=f(a)=5-a
2,
f(x)在x=1處取得最大值,f(x)max=f(1)=6-2a,
∴5-a
2≤f(x)≤6-2a,
∵對任意的x∈[1,a+1],總有-4≤f(x)≤4,
∴
解得1≤a≤3;
綜上:2≤a≤3;
分析:(1)確定函數(shù)的對稱軸,從而可得函數(shù)的單調(diào)性,利用f(x)的定義域和值域均是[1,a],建立方程,即可求實(shí)數(shù)a的值.
(2)可以根據(jù)函數(shù)f(x)=x
2-2ax+5=(x-a)
2+5-a
2.開口向上,對稱軸為x=a,可以推出a的范圍,利用函數(shù)的圖象求出[1,a+1]上的最值問題,對任意的x∈[1,a+1],總有-4≤f(x)≤4,從而求出實(shí)數(shù)a的取值范圍.
點(diǎn)評:本題考查二次函數(shù)的最值問題,考查函數(shù)的單調(diào)性,確定函數(shù)的單調(diào)性是關(guān)鍵,此題是一道函數(shù)的恒成立問題,第二問難度比較大,充分考查了函數(shù)的對稱軸和二次函數(shù)的圖象問題,是一道中檔題;