函數(shù)f(x)=x2-2ax+a在區(qū)間(-∞,1)上有最小值,則函數(shù)g(x)=在區(qū)間(1,+∞)上一定(    )

A.有最小值             B.有最大值            C.是減函數(shù)             D.是增函數(shù)

解析:函數(shù)f(x)=x2-2ax+a的對稱軸是直線x=a,由于函數(shù)f(x)在開區(qū)間(-∞,1)上有最小值,所以直線x=a位于區(qū)間(-∞,1)內(nèi),即a<1.g(x)==x+-2a,下面用定義法判斷函數(shù)g(x)在區(qū)間(1,+∞)上的單調(diào)性.設(shè)1<x1<x2,則g(x1)-g(x2)=(x1+-2a)-(x2+-2a)=(x1-x2)+

()=(x1-x2)(1-)=(x1-x2).

∵1<x1<x2,

∴x1-x2<0,x1x2>1>0.

又∵a<1,∴x1x2>a.

∴x1x2-a>0.

∴g(x1)-g(x2)<0.∴g(x1)<g(x2).

∴函數(shù)g(x)在區(qū)間(1,+∞)上是增函數(shù),函數(shù)g(x)在區(qū)間(1,+∞)上沒有最值,故選D.

答案:D

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2+4xx≥0
4x-x2x<0.
若f(2-a2)>f(a),則實數(shù)a的取值范圍是( 。
A、(-∞,-1)∪(2,+∞)
B、(-1,2)
C、(-2,1)
D、(-∞,-2)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2+1x-1
,其圖象在點(0,-1)處的切線為l.
(I)求l的方程;
(II)求與l平行的切線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=
x2+1
 
 
 
 
 
 
,(x≥0)
-x+
1
 
 
 
 
 
,(x<0)
,則f(-1)的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•安徽模擬)已知函數(shù)f(x)=
-x2+4x-10(x≤2)
log3(x-1)-6(x>2)
,若f(6-a2)>f(5a),則實數(shù)a的取值范圍是
(-6,1)
(-6,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•重慶一模)設(shè)函數(shù)f(x)=-x2+2ax+m,g(x)=
ax

(I)若函數(shù)f(x),g(x)在[1,2]上都是減函數(shù),求實數(shù)a的取值范圍;
(II)當a=1時,設(shè)函數(shù)h(x)=f(x)g(x),若h(x)在(0,+∞)內(nèi)的最大值為-4,求實數(shù)m的值.

查看答案和解析>>

同步練習冊答案