已知定義域?yàn)?-1,1)的奇函數(shù)又是減函數(shù),且則a的取值范圍是(     )

A.(3,)      B.(2,3)       C.(2,4)          D.(-2,3)

 

【答案】

B

【解析】由條件得f(a-3)<f(a2-9),即  ∴a∈(2,3) 故選B。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域?yàn)閇0,1]的函數(shù)f(x)同時(shí)滿足以下三個(gè)條件:
①對任意的x∈[0,1],總有f(x)≥0; 
②f(1)=1;
③若x1≥0,x2≥0且x1+x2≤1,則有f(x1+x2)≥f(x1)+f(x2)成立,并且稱f(x)為“友誼函數(shù)”,
請解答下列各題:
(1)若已知f(x)為“友誼函數(shù)”,求f(0)的值;
(2)函數(shù)g(x)=2x-1在區(qū)間[0,1]上是否為“友誼函數(shù)”?并給出理由.
(3)已知f(x)為“友誼函數(shù)”,且 0≤x1<x2≤1,求證:f(x1)≤f(x2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域?yàn)閇0,1]的函數(shù)f(x)同時(shí)滿足:
①對于任意的x∈[0,1],總有f(x)≥0;
②f(1)=1;
③若0≤x1≤1,0≤x2≤1,x1+x2≤1,則有f (x1+x2)≥f (x1)+f (x2).
(1)試求f(0)的值;
(2)試求函數(shù)f(x)的最大值;
(3)試證明:當(dāng)x∈(
1
2n
,
1
2n-1
]
,n∈N+時(shí),f(x)<2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域?yàn)閇0,1]的函數(shù)f(x)同時(shí)滿足:①對于任意的x∈[0,1],總有f(x)≥0;②f(1)=1;③若x1≥0,x2≥0,x1+x2≤1,則有f(x1+x2)≥f(x1)+f(x2).
(1)求f(0)的值;
(2)求f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域?yàn)閇0,1]的函數(shù)f(x)同時(shí)滿足:
(1)對于任意x∈(0,1),總有f(x)>0;
(2)f(1)=1;
(3)若x1≥0,x2≥0,x1+x2≤1,則有f(x1+x2)≥f(x1)+f(x2);
(Ⅰ)證明f(x)在[0,1]上為增函數(shù);
(Ⅱ)若對于任意x∈[0,1],總有4f2(x)-4(2-a)f(x)+5-4a≥0,求實(shí)數(shù)a的取值范圍;
(Ⅲ)比較f(
1
22
+
2
23
+…+
n
2n+1
)
與1的大小,并給與證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域?yàn)閇0,1]的函數(shù)f (x)同時(shí)滿足:
①對于任意的x∈[0,1],總有f(x)≥0;
②f(1)=1;
③若0≤x1≤1,0≤x2≤1,x1+x2≤1,則有f(x1+x2)≥f(x1)+f(x2).
(1)試求f(0)的值;
(2)試求函數(shù)f (x)的最大值;
(3)試證明:當(dāng)x∈(
1
4
1
2
]
時(shí),f(x)<2x.

查看答案和解析>>

同步練習(xí)冊答案