已知函數(shù),求其單調(diào)區(qū)間及值域.
【答案】分析:要求復(fù)合函數(shù)的單調(diào)遞增(減)區(qū)間的即求內(nèi)函數(shù)的單調(diào)遞減區(qū)間,根據(jù)二次函數(shù)的性質(zhì),求出內(nèi)函數(shù)的單調(diào)遞減(增)區(qū)間和值域后,即可得到答案.
解答:解:設(shè)t(x)=x2+2x+5=(x+1)2+4≥4
則t(x)的單調(diào)遞減區(qū)間為(-∞,-1],遞增區(qū)間為[-1,+∞)
∵函數(shù)y=為減函數(shù),
故函數(shù)的單調(diào)遞增區(qū)間為(-∞,-1],遞減區(qū)間為[-1,+∞)

∴值域?yàn)椋?,]
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是復(fù)合函數(shù)的單調(diào)性,函數(shù)的值域,指數(shù)函數(shù)的性質(zhì)及二次函數(shù)的性質(zhì),其中根據(jù)復(fù)合函數(shù)單調(diào)性“同增異減”的法則,將問(wèn)題轉(zhuǎn)化為求二次函數(shù)的單調(diào)遞減區(qū)間問(wèn)題是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•天河區(qū)三模)設(shè)f(x)是定義在區(qū)間(1,+∞)上的函數(shù),其導(dǎo)函數(shù)為f'(x).如果存在實(shí)數(shù)a和函數(shù)h(x),其中h(x)對(duì)任意的x∈(1,+∞)都有h(x)>0,使得f'(x)=h(x)(x2-ax+1),則稱(chēng)函數(shù)f(x)具有性質(zhì)P(a).
(1)設(shè)函數(shù)f(x)=Inx+
b+2x+1
(x>1)
,其中b為實(shí)數(shù).
(i)求證:函數(shù)f(x)具有性質(zhì)P(b);
(ii)求函數(shù)f(x)的單調(diào)區(qū)間.
(2)已知函數(shù)g(x)具有性質(zhì)P(2),給定x1,x2∈(1,+∞),x1<x2,設(shè)m為實(shí)數(shù),a=mx1+(1-m)x2,β=(1-m)x1+mx2,且a>1,β>1,若|g(a)-g(β)|<|g(x1)-g(x2)|,求m取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•香洲區(qū)模擬)已知向量
m
=(-2sinx,-1),
n
=(-cosx,cos2x)
,定義f(x)=
m
n

(1)求函數(shù)f(x)的表達(dá)式,并求其單調(diào)增區(qū)間;
(2)在銳角△ABC中,角A、B、C對(duì)邊分別為a、b、c,且f(A)=1,bc=8,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案