精英家教網 > 高中數學 > 題目詳情
設點p是橢圓
x2
a2
+
y2
b2
=1
(a>0,b>0)上一點,F(xiàn)1,F(xiàn)2分別是橢圓的左、右焦點,I為△PF1F2的內心,若S△IPF1+S△IPF2=2S△IF1F2,則該橢圓的離心率是
1
2
1
2
分析:設△PF1F2的內切圓半徑為r,根據內心的性質,結合三角形面積公式將S△IPF1+S△IPF2=2S△IF1F2化簡整理,可得|PF1|+|PF2|=2|F1F2|.由此結合橢圓離心率公式,即可得到該橢圓的離心率.
解答:解:設△PF1F2的內切圓半徑為r,則
S△IPF1=
1
2
|PF1|•r,S△IPF2=
1
2
|PF2|•r,S△IF1F2=
1
2
|F1F2|•r,
∵S△IPF1+S△IPF2=2S△IF1F2,
1
2
|PF1|•r+
1
2
|PF2|•r=|F1F2|•r,可得|PF1|+|PF2|=2|F1F2|.
∴橢圓的離心率e=
c
a
=
2c
2a
=
|F1F2|
|PF1|+|PF2|
=
1
2

故答案為:
1
2
點評:本題已知橢圓的焦點三角形的一個面積關系式,求橢圓的離心率.著重考查了三角形內切圓的性質、橢圓的標準方程和簡單性質等知識,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2012•上饒一模)設點P是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
上一點,F(xiàn)1,F(xiàn)2分別是橢圓的左、右焦點,I為△PF1F2的內心,若S△IPF1+S△IPF2=2S△IF1F2,則該橢圓的離心率是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

設點P是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
與圓x2+y2=3b2的一個交點,F(xiàn)1,F(xiàn)2分別是橢圓的左、右焦點,且|PF1|=3|PF2|,則橢圓的離心率為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•河東區(qū)二模)已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)

(1)設F是橢圓的一個焦點,M橢圓上的任意一點,|MF|的最大值與最小值的算術平均等于4,橢圓的頂點A與N(-2,0)關于直線x+y=0對稱,求此橢圓方程;
(2)設點P是橢圓
x2
a2
+
y2
b2
=1
上異于長軸端點的任意一點,F(xiàn)1、F2為兩焦點,記∠F1PF2=θ,求證|PF1|•|PF2|=
2b2
1+cosθ

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

設點p是橢圓
x2
a2
+
y2
b2
=1
(a>0,b>0)上一點,F(xiàn)1,F(xiàn)2分別是橢圓的左、右焦點,I為△PF1F2的內心,若 S△IPF1+S△IPF2=2S△IF1F2,則該橢圓的離心率是______.

查看答案和解析>>

同步練習冊答案