若f(x)=數(shù)學公式,則f(1)+f(2)+f(3)…+f(2011)+f(數(shù)學公式)+f(數(shù)學公式)+…+f(數(shù)學公式)=


  1. A.
    2009
  2. B.
    2010數(shù)學公式
  3. C.
    2012
  4. D.
    1
B
分析:根據(jù)函數(shù)的解析式,可以求得f(1),f(2),f(3)…,f(2011),f(),f(),…,f()各項的值,進行求和;事實上,觀察題目的特點,考慮f(x)+f(。┦欠裼幸(guī)律:f(x)+f( )=+=+=1,所以此規(guī)律使運算量大大降低.
解答::f(x)+f ( )=+=+=1,
f(1)+f(2)+f(3)…+f(2011)+f()+f()+…+f()=f(1)+[f(2)+f()]+[f(3)+f()]+…+[f(2011)+f()]=+1+1+…+1=2010
故選B.
點評:解析法是中學階段函數(shù)常見的表示法.根據(jù)解析式可求出任一函數(shù)值.本題還考查分析解決問題的能力,解法上與倒序相加法如出一轍.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義:若{y|y=f(x),x∈A}=A,則f(x)稱為A上的一階回歸函數(shù);
若{y|y=f(f(x)),x∈A}=A,則f(x)稱為A上的二階回歸函數(shù);
若{y|y=f(f(f(x))),x∈A}=A,則f(x)稱為A上的三階回歸函數(shù).
下列判斷正確的個數(shù)是( 。
①f(x)=3-x是[1,2]上的一階回歸函數(shù);
f(x)=1-(
1
2
)x
是[-1,0]上的一階回歸函數(shù)
f(x)=
-2
x
是(0,+∞)上的二階回歸函數(shù);
f(x)=
1
1-x
是(2,+∞)上的三階回歸函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列說法中,正確的有
0
0

①若f′(x0)=0,則f(x0)為f(x)的極值點;
②在閉區(qū)間[a,b]上,極大值中最大的就是最大值;
③若f(x)的極大值為f(x1),f(x)的極小值為f(x2),則f(x1)>f(x2);
④有的函數(shù)有可能有兩個最小值;⑤f(x0)為f(x)的極值點,則f′(x0)存在且f′(x0)=0.

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年重慶市七校聯(lián)盟高三上學期聯(lián)考文科數(shù)學試卷(解析版) 題型:填空題

給出下列四個命題:①“x<1”是“x2<1”的充分不必要條件;

②若f(x)是定義在[-1,1]的偶函數(shù)且在[-1,0]上是減函數(shù),θ),則f(sinθ)<;③若f(x)的圖像在點A(1,f(1))處的切線方程是y=x+2,則f(1)+f '(1)=3;

④若f(x)=lg(-x),則f(lg2)+f(lg)=0;⑤函數(shù)f(x)=在區(qū)間(0,1)上有零點。

其中所有正確命題的序號是________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2008-2009學年江蘇省揚州中學高三(上)開學考試數(shù)學試卷(解析版) 題型:填空題

下列說法中,正確的有   
①若f′(x)=0,則f(x)為f(x)的極值點;
②在閉區(qū)間[a,b]上,極大值中最大的就是最大值;
③若f(x)的極大值為f(x1),f(x)的極小值為f(x2),則f(x1)>f(x2);
④有的函數(shù)有可能有兩個最小值;⑤f(x)為f(x)的極值點,則f′(x)存在且f′(x)=0.

查看答案和解析>>

同步練習冊答案