已知向量
m
=(
3
cos
x
4
,cos
x
4
)
,
n
=(sin
x
4
,cos
x
4
)
,函數(shù)f(x)=
m
n

(Ⅰ)求函數(shù)f(x)的最小正周期及單調(diào)遞減區(qū)間;(Ⅱ)在銳角△ABC中,A,B,C的對邊分別是a,b,c,且滿足acosC+
1
2
c=b
,求f(2B)的取值范圍.
(Ⅰ)∵函數(shù)f(x)=
m
n
=
3
sin
x
4
cos
x
4
+cos2
x
4
=
3
2
sin
x
2
+
1
2
cos
x
x
+
1
2
=sin(
x
2
+
π
6
)+
1
2
,
故函數(shù)的最小正周期為
1
2
=4π.
令 2kπ+
π
2
x
2
+
π
6
≤2kπ+
2
,k∈z,求得  4kπ+
3
≤x≤4kπ+
3
,k∈z,
故函數(shù)的單調(diào)減區(qū)間為[4kπ+
3
,4kπ+
3
],k∈z.
(Ⅱ)在銳角△ABC中,∵acosC+
1
2
c=b
,由余弦定理可得 a•
a2+b2-c2
2ab
+
c
2
=b.
化簡可得b2+c2-a2=bc,∴cosA=
b2+c2-a2
2bc
=
1
2
,∴A=
π
3

∴B+C=
3
,∴
3
-
π
2
=
π
6
<B<
π
2
,∴
π
3
<B+
π
6
3
,∴
3
2
<sin(B+
π
6
)≤1
f(2B)=sin(B+
π
6
)+
1
2
∈(
1+
3
2
,
3
2
],即f(2B)的取值范圍為(
1+
3
2
3
2
].
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(
3
cosx,cos2x),
n
=(sinx,-
1
2
),x∈R,設(shè)函數(shù)f(x)=
m
n

(1)求f(x)的最小正周期;
(2)求f(x)在[-π,-
π
2
]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•梅州一模)已知向量
m
=(sinx,-1),向量
n
=(
3
cosx,-
1
2
),函數(shù)f(x)=(
m
+
n
)•
m

(1)求f(x)的最小正周期T;
(2)已知a,b,c分別為△ABC內(nèi)角A,B,C的對邊,A為銳角,a=2
3
,c=4,且f(A)恰是f(x)在[0,
π
2
]上的最大值,求A,b和△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(2,-
3
cosx),
n
=(cos2x,2sinx)
,函數(shù)f(x)=1-
m
n

(1)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)求函數(shù)f(x)在區(qū)間[-
π
3
,
π
6
]
上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(2sinx,2cosx),
n
=(
3
cosx,cosx),f(x)=
m
n
-1.
(1)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)將函數(shù)y=f(x)的圖象上各點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)先縮短到原來的
1
2
,把所得到的圖象再向左平移
π
6
單位,得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)在區(qū)間[0,
π
8
]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(2cosx,,2sinx)
n
=(cosx,,
3
cosx)
,函數(shù)f(x)=a
m
n
+b-a
(a、b為常數(shù)且x∈R).
(Ⅰ) 當(dāng)a=1,b=2時,求f(x)的最小值;
(Ⅱ) 是否存在非零整數(shù)a、b,使得當(dāng)x∈[0,
π
2
]
時,f(x)的值域為[2,8].若存在,求出a、b的值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案