定義在上的函數(shù),是它的導函數(shù),且恒有成立,則(     )
A.B.
C.D.
D

試題分析:由于,又因為,從而有:;構造函數(shù),從而有上是增函數(shù),所以有即:,故選D.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知關于的函數(shù),其導函數(shù)為.記函數(shù) 在區(qū)間上的最大值為
(1) 如果函數(shù)處有極值,試確定的值;
(2) 若,證明對任意的,都有;
(3) 若對任意的恒成立,試求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

對于三次函數(shù)。
定義:(1)設是函數(shù)的導數(shù)的導數(shù),若方程有實數(shù)解,則稱點為函數(shù)的“拐點”;
定義:(2)設為常數(shù),若定義在上的函數(shù)對于定義域內的一切實數(shù),都有成立,則函數(shù)的圖象關于點對稱。
己知,請回答下列問題:
(1)求函數(shù)的“拐點”的坐標
(2)檢驗函數(shù)的圖象是否關于“拐點”對稱,對于任意的三次函數(shù)寫出一個有關“拐點”的結論(不必證明)
(3)寫出一個三次函數(shù),使得它的“拐點”是(不要過程)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù),).
(1)若x=3是的極值點,求[1,a]上的最小值和最大值;
(2)若時是增函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
已知函數(shù)為常數(shù))的圖像與軸交于點,曲線在點處的切線斜率為.
(1)求的值及函數(shù)的極值;
(2)證明:當時,
(3)證明:對任意給定的正數(shù),總存在,使得當時,恒有

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設一圓錐內接于半徑為的球,則圓錐的體積最大時,該圓錐的高為           。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

一輛汽車從停止時開始加速行駛,并且在5秒內速度v(m/s)與時間t(s)的關系近似表示為v=f(t)=-t2+10t,則汽車在時刻t=1秒時的加速度為( 。
A.9m/sB.9m/s2C.8m/s2D.7m/s2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

函數(shù)的極小值為       ;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)= (a∈R).
(1)求f(x)的極值;
(2)若函數(shù)f(x)的圖象與函數(shù)g(x)=1的圖象在區(qū)間(0,e2]上有公共點,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案