在平面直角坐標系xoy中,橢圓C:
x2
25
+
y2
9
=1的左、右焦點分別為F1、F2,P為橢圓C上的一點,且PF1⊥PF2,則△PF1F2的面積為
9
9
分析:設出p點的坐標(x1,y1),根據(jù)PF1⊥PF2,求出y1,再根據(jù) S=
1
2
×2c•|y1|
求面積.
解答:解:橢圓C:
x2
25
+
y2
9
=1的左、右焦點分別為F1(-4,0)、F2(4,0),
設P(x1,y1),由已知PF1⊥PF2,所以
PF1
PF2
=0
,
即 (-4-x1,-y1)•(4-x1,-y1)=0,
∴x12+y12=16,
又因為
x12
25
+
y 22
9
=1,
解得 y1
9
4
,所以,△PF1F2的面積S=
1
2
×2c•|y1|=9

故答案為:9.
點評:本題考查了橢圓的標準方程、橢圓的簡單性質以及根據(jù)一些性質求面積,用到數(shù)形結合思想,這是高中數(shù)學的一種重要思想.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xoy中,已知圓心在直線y=x+4上,半徑為2
2
的圓C經(jīng)過坐標原點O,橢圓
x2
a2
+
y2
9
=1(a>0)
與圓C的一個交點到橢圓兩焦點的距離之和為10.
(1)求圓C的方程;
(2)若F為橢圓的右焦點,點P在圓C上,且滿足PF=4,求點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在平面直角坐標系xOy中,銳角α和鈍角β的終邊分別與單位圓交于A,B兩點.若點A的橫坐標是
3
5
,點B的縱坐標是
12
13
,則sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,若焦點在x軸的橢圓
x2
m
+
y2
3
=1
的離心率為
1
2
,則m的值為
4
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•泰州三模)選修4-4:坐標系與參數(shù)方程
在平面直角坐標系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.設直線AC與BD的交點為P,求動點P的軌跡的參數(shù)方程(以t為參數(shù))及普通方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•東莞一模)在平面直角坐標系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點為F1(-1,0),且橢圓C的離心率e=
1
2

(1)求橢圓C的方程;
(2)設橢圓C的上下頂點分別為A1,A2,Q是橢圓C上異于A1,A2的任一點,直線QA1,QA2分別交x軸于點S,T,證明:|OS|•|OT|為定值,并求出該定值;
(3)在橢圓C上,是否存在點M(m,n),使得直線l:mx+ny=2與圓O:x2+y2=
16
7
相交于不同的兩點A、B,且△OAB的面積最大?若存在,求出點M的坐標及對應的△OAB的面積;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案