用清水漂洗衣服,假定每次能洗去污垢的,若要使存留的污垢不超過原有的
則至少要漂洗(   )
A.3次B.4次C.5次D.5次以上
B

分析:仔細閱讀題目便可發(fā)現(xiàn)存留污垢y是以a為首項,以
為公比的等比數(shù)列,利用等比數(shù)列的通項公式,列出漂洗次數(shù)n與存留污垢y的關系式,解不等式便可得出答案.
解答:解:設原有污垢為為a,漂洗n次后,存留污垢為y,
由題意可知:漂洗一次后存留污垢y1=(1-)a=a,
漂洗兩次后存留污垢y2=(1-2?a=( 2a,

漂洗n次后存留污垢yn=(1-na=(na,
若使存留的污垢不超過原有的1%,
則有yn=(na≤1%,
解不等式得n≥4,
故答案為4.
點評:本題考查了等比數(shù)列的通項公式,考查了學生的審題及建模能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

袋中有大小相同的4個紅球,6個白球,每次從中摸取一球,每個球被取到的可
能性相同,現(xiàn)不放回地取3個球.
(1)求第三個取出紅球的概率;
(2)求至少取到兩個紅球的概率;
(3)(理)用分別表示取得的紅球數(shù)與白球數(shù),計算、、、.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

.ABCD為長方形,AB=2,BC=1,O為AB的中點,在長方形ABCD內(nèi)隨機
取一點,取到的點到O的距離大于1的概率為 (     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

盒中裝有10個乒乓球,其中6只新球,4只舊球。不放回地依次取出2個球使用,在第一次取出新球的條件下,第二次也取到新球的概率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(14分)今有甲、乙兩個籃球隊進行比賽,比賽采用7局4勝制.假設甲、乙兩隊在每場比賽中獲勝的概率都是.并記需要比賽的場數(shù)為ξ.
(Ⅰ)求ξ大于5的概率;(Ⅱ)求ξ的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

.(本小題滿分12分)
某科技公司遇到一個技術性難題,決定成立甲、乙兩個攻關小組,按要求各自單獨進行為期一個月的技術攻關,同時決定對攻關期限內(nèi)就攻克技術難題的小組給予獎勵.已知此技術難題在攻關期限內(nèi)被甲小組攻克的概率為,被乙小組攻克的概率為
(1)設為攻關期滿時獲獎的攻關小組數(shù),求的分布列及;
(2)設為攻關期滿時獲獎的攻關小組數(shù)與沒有獲獎的攻關小組數(shù)之差的平方,記“函數(shù)在定義域內(nèi)單調(diào)遞增”為事件,求事件的概率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

           

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

把4個不同的球任意投入4個不同的盒子內(nèi)(每盒裝球數(shù)不限),則無空盒的概率為________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

擲兩顆骰子得兩數(shù),則事件“兩數(shù)之和大于”的概率為_

查看答案和解析>>

同步練習冊答案