如圖,已知⊙O是△ABC的外接圓,AB是⊙O的直徑,D是AB延長(zhǎng)線上一點(diǎn),AE⊥DC交DC的延長(zhǎng)線于點(diǎn)E,且AC平分∠EAB.
(1)求證:DE是⊙O的切線;
(2)若AB=6,AE=,求BD和BC的長(zhǎng).
【答案】分析:(1)要證DE是⊙O的切線,只要連接OC,再證∠DCO=90°即可.
(2)已知兩邊長(zhǎng),求其它邊的長(zhǎng),可以來三角形相似,對(duì)應(yīng)邊成比例來求.
解答:(1)證明:連接OC
∵AC平分∠EAB
∴∠EAC=∠BAC
又在圓中OA=OC
∴∠AC0=∠BAC
∴∠EAC=∠ACO
∴OC∥AE(內(nèi)錯(cuò)角相等,兩直線平行)
則由AE⊥DC知
OC⊥DC
即DE是⊙O的切線.
(2)∵∠D=∠D,∠E=∠OCD=90°
∴△DCO∽△DEA
∴BD=2
∵Rt△EAC∽R(shí)t△CAB.
∴AC2=
由勾股定理得
BC=
點(diǎn)評(píng):本題考查了切線的判定、相似三角形的性質(zhì)和勾股定理的運(yùn)用.要證某線是圓的切線,已知此線過圓上某點(diǎn),連接圓心與這點(diǎn)(即為半徑),再證垂直即可.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知O、A、B是平面上三點(diǎn),向量
OA
=
a
,
OB
=
b
.在平面AOB上,P是線段AB垂直平分線上任意一點(diǎn),向量
OP
=
p
,且|
a
|=3,|
b
|=2,則
p
•(
a
-
b
)的值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:訓(xùn)練必修四數(shù)學(xué)人教A版 人教A版 題型:044

如圖,已知O是△ABC內(nèi)一點(diǎn),∠AOB=150°,∠BOC=90°.設(shè)ab,c,且|a|=2,|b|=1,|c|=3,試用ab表示c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

如圖,已知O、A、B是平面上三點(diǎn),向量數(shù)學(xué)公式=數(shù)學(xué)公式,數(shù)學(xué)公式=數(shù)學(xué)公式.在平面AOB上,P是線段AB垂直平分線上任意一點(diǎn),向量數(shù)學(xué)公式=數(shù)學(xué)公式,且|數(shù)學(xué)公式|=3,|數(shù)學(xué)公式|=2,則數(shù)學(xué)公式•(數(shù)學(xué)公式)的值是


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年云南師大附中高考適應(yīng)性月考數(shù)學(xué)試卷5(文科)(解析版) 題型:選擇題

如圖,已知O、A、B是平面上三點(diǎn),向量=,=.在平面AOB上,P是線段AB垂直平分線上任意一點(diǎn),向量=,且||=3,||=2,則•()的值是( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年云南師大附中高考適應(yīng)性月考數(shù)學(xué)試卷5(理科)(解析版) 題型:選擇題

如圖,已知O、A、B是平面上三點(diǎn),向量=,=.在平面AOB上,P是線段AB垂直平分線上任意一點(diǎn),向量=,且||=3,||=2,則•()的值是( )

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案