(全國(guó)Ⅱ卷理22)設(shè)函數(shù)

(Ⅰ)求的單調(diào)區(qū)間;

(Ⅱ)如果對(duì)任何,都有,求的取值范圍.

【試題解析】

(Ⅰ).      2分

當(dāng))時(shí),,即

當(dāng))時(shí),,即

因此在每一個(gè)區(qū)間)是增函數(shù),

在每一個(gè)區(qū)間)是減函數(shù).     6分

(Ⅱ)令,則

故當(dāng)時(shí),

,所以當(dāng)時(shí),,即.       9分

當(dāng)時(shí),令,則

故當(dāng)時(shí),

因此上單調(diào)增加.

故當(dāng)時(shí),

于是,當(dāng)時(shí),

當(dāng)時(shí),有

因此,的取值范圍是.   12分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(全國(guó)Ⅱ卷理22)設(shè)函數(shù)

(Ⅰ)求的單調(diào)區(qū)間;

(Ⅱ)如果對(duì)任何,都有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(全國(guó)Ⅰ卷理21文22)雙曲線的中心為原點(diǎn),焦點(diǎn)在軸上,兩條漸近線分別為,經(jīng)過(guò)右焦點(diǎn)垂直于的直線分別交兩點(diǎn).已知成等差數(shù)列,且同向.

(Ⅰ)求雙曲線的離心率;

(Ⅱ)設(shè)被雙曲線所截得的線段的長(zhǎng)為4,求雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(全國(guó)Ⅰ卷理22)設(shè)函數(shù).?dāng)?shù)列滿足,

(Ⅰ)證明:函數(shù)在區(qū)間是增函數(shù);

(Ⅱ)證明:

(Ⅲ)設(shè),整數(shù).證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(全國(guó)Ⅰ卷理22)設(shè)函數(shù).?dāng)?shù)列滿足

(Ⅰ)證明:函數(shù)在區(qū)間是增函數(shù);

(Ⅱ)證明:

(Ⅲ)設(shè),整數(shù).證明:

查看答案和解析>>

同步練習(xí)冊(cè)答案