對于函數(shù)f(x)=x3cos3(x+
π
6
),下列說法正確的是( 。
分析:由題設(shè)條件知,可先化簡函數(shù)解析式,再研究函數(shù)的性質(zhì),根據(jù)得出的函數(shù)的性質(zhì)選出正確選項(xiàng)
解答:解:f(x)=x3cos3(x+
π
6
)=x3cos(3x+
π
2
)=-x3sin3x
由于f(-x)=-x3sin3x=f(x),可知此函數(shù)是偶函數(shù),
又x3與sin3x在(0,
π
6
)上遞增,可得f(x)=-x3sin3x在(0,
π
6
)上遞減,
對照四個選項(xiàng),C正確
故選C
點(diǎn)評:本題考查函數(shù)奇偶性與函數(shù)單調(diào)性的判斷,解題的關(guān)鍵是熟練掌握函數(shù)奇偶性的判斷方法與函數(shù)單調(diào)性的判斷方法,除了用定義法判斷之外,掌握一些基本函數(shù)的單調(diào)性,利用基本函數(shù)的單調(diào)性判斷一些由這些基本函數(shù)組合的函數(shù)的性質(zhì)可以方便解題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域?yàn)镽,且對于一切實(shí)數(shù)x滿足f(x+2)=f(2-x),f(x+7)=f(7-x)
(1)若f(5)=9,求:f(-5);
(2)已知x∈[2,7]時,f(x)=(x-2)2,求當(dāng)x∈[16,20]時,函數(shù)g(x)=2x-f(x)的表達(dá)式,并求出g(x)的最大值和最小值;
(3)若f(x)=0的一根是0,記f(x)=0在區(qū)間[-1000,1000]上的根數(shù)為N,求N的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實(shí)數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的定義域?yàn)锳,若存在非零實(shí)數(shù)t,使得對于任意x∈C(C⊆A),有x+t∈A,且f(x+t)≤f(x),則稱f(x)為C上的t低調(diào)函數(shù).如果定義域?yàn)閇0,+∞)的函數(shù)f(x)=-|x-m2|+m2,且 f(x)為[0,+∞)上的10低調(diào)函數(shù),那么實(shí)數(shù)m的取值范圍是(  )
A、[-5,5]
B、[-
5
,
5
]
C、[-
10
,
10
]
D、[-
5
2
,
5
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x)定義域中任意的x1,x2(x1≠x2)有如下結(jié)論
①f(x1+x2)=f(x1)•f(x2);
②f(x1•x2)=f(x1)+f(x2);
f(x1)-f(x2)
x1-x2
>0
;
f(
x1+x2
2
)<
f(x1)+f(x2)
2

當(dāng)f(x)=(
1
2
)x
時,上述結(jié)論中正確的序號是( 。
A、①②B、①④C、②③D、③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:徐州模擬 題型:解答題

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實(shí)數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案