若a>0,b>0,且函數(shù)f(x)=4x3-ax2-2bx-2在x=1處有極值,則ab的最大值( 。
A、2B、3C、6D、9
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的極值
專題:計(jì)算題,導(dǎo)數(shù)的綜合應(yīng)用,不等式的解法及應(yīng)用
分析:求出函數(shù)的導(dǎo)數(shù),由極值的概念得到f′(1)=0,即有a+b=6,再由基本不等式即可得到最大值.
解答: 解:函數(shù)f(x)=4x3-ax2-2bx-2的導(dǎo)數(shù)f′(x)=12x2-2ax-2b,
由于函數(shù)f(x)=4x3-ax2-2bx-2在x=1處有極值,
則有f′(1)=0,即有a+b=6,(a,b>0),
由于a+b≥2
ab
,即有ab≤(
a+b
2
2=9,當(dāng)且僅當(dāng)a=b=3取最大值9.
故選D.
點(diǎn)評:本題考查導(dǎo)數(shù)的運(yùn)用:求極值,考查基本不等式的運(yùn)用,考查運(yùn)算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2,值域?yàn)閧1,4}時定義域?yàn)?div id="mc6g5uk" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在平面直角坐標(biāo)系xOy中的一個橢圓C,它的中心在原點(diǎn),左焦點(diǎn)為F(-
3
,0),右頂點(diǎn)為D(2,0),設(shè)點(diǎn)A(1,
1
2
).
(Ⅰ)求該橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若P是橢圓上的動點(diǎn),求線段PA中點(diǎn)M的軌跡方程;
(Ⅲ)設(shè)O為坐標(biāo)原點(diǎn),過點(diǎn)F(
3
,0)的直線l與曲線C交于A,B兩點(diǎn),N為AB的中點(diǎn),連結(jié)ON 并延長交曲線C于點(diǎn)E,且
OE
=2
ON
,求|AB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

面面垂直的判定定理:文字語言:
 
;符號語言:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算:
(1)(-3
3
8
)
2
3
+0.01-
1
2
-(
2
-1)-1+(
3
-
2
0;
(2)log
2
2+log927+
1
4
log4
1
16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若某幾何體的三視圖(單位:cm)如圖所示(依次為正視圖、側(cè)視圖、俯視圖),則此幾何體的體積是
 
cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是函數(shù)f(x)的導(dǎo)函數(shù)f′(x)的圖象,則下面判斷正確的是(  )
A、函數(shù)f(x)在區(qū)間(-2,1)上單調(diào)遞增
B、函數(shù)f(x)在x=1處取得極大值
C、函數(shù)f(x)在(4,5)上單調(diào)遞增
D、當(dāng)x=4時,f(x)取極大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三角形的三邊長a,b,c成等差數(shù)列,且ab+bc+ac=18,則實(shí)數(shù)b的范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線f(x)=xn+1(n∈N*)與直線x=1交于點(diǎn)P,若設(shè)曲線y=f(x)在點(diǎn)P處的切線與x軸交點(diǎn)的橫坐標(biāo)為xn,則log2015x1+log2015x2+…+log2015x2014的值為
 

查看答案和解析>>

同步練習(xí)冊答案