已知雙曲線(xiàn)的左、右焦點(diǎn)分別是F1、F2,其一條漸近線(xiàn)方程為y=x,點(diǎn)在雙曲線(xiàn)上、則=( )
A.-12
B.-2
C.0
D.4
【答案】分析:由雙曲線(xiàn)的漸近線(xiàn)方程,不難給出a,b的關(guān)系,代入即可求出雙曲線(xiàn)的標(biāo)準(zhǔn)方程,進(jìn)而可以求出F1、F2,及P點(diǎn)坐標(biāo),求出向量坐標(biāo)后代入向量?jī)?nèi)積公式即可求解.
解答:解:由漸近線(xiàn)方程為y=x知雙曲線(xiàn)是等軸雙曲線(xiàn),
∴雙曲線(xiàn)方程是x2-y2=2,
于是兩焦點(diǎn)坐標(biāo)分別是F1(-2,0)和F2(2,0),
、
不妨令,

=
故選C
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是雙曲線(xiàn)的簡(jiǎn)單性質(zhì)和平面向量的數(shù)量積運(yùn)算,處理的關(guān)鍵是熟練掌握雙曲線(xiàn)的性質(zhì)(頂點(diǎn)、焦點(diǎn)、漸近線(xiàn)、實(shí)軸、虛軸等與 a,b,c的關(guān)系),求出滿(mǎn)足條件的向量的坐標(biāo)后,再轉(zhuǎn)化為平面向量的數(shù)量積運(yùn)算.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線(xiàn)C:
x2
9
-
y2
16
=1
的左、右焦 點(diǎn)分別為F1、F2,P為C的右支上一點(diǎn),且|
PF2
|=|
F1F2
|,則△PF1F2
的面積等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年貴州省高三第一次月考文科數(shù)學(xué) 題型:解答題

(本小題滿(mǎn)分12分)已知橢圓的方程為 ,雙曲線(xiàn)的左、右焦

 

點(diǎn)分別是的左、右頂點(diǎn),而的左、右頂點(diǎn)分別是的左、右焦點(diǎn).

(1)求雙曲線(xiàn)的方程;                                             

(2)若直線(xiàn)與雙曲線(xiàn)C2恒有兩個(gè)不同的交點(diǎn)A和B,求的范圍。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年廣西桂林市高三第一次聯(lián)合調(diào)研數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知雙曲線(xiàn)的左、右焦 點(diǎn)分別為F1、F2,P為C的右支上一點(diǎn),且的面積等于   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年廣西桂林市高三第一次調(diào)研數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知雙曲線(xiàn)的左、右焦 點(diǎn)分別為F1、F2,P為C的右支上一點(diǎn),且的面積等于   

查看答案和解析>>

同步練習(xí)冊(cè)答案