設(shè)橢圓+=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P(a,b)滿足|PF2|=|F1F2|.
(1)求橢圓的離心率e;
(2)設(shè)直線PF2與橢圓相交于A,B兩點(diǎn).若直線PF2與圓(x+1)2+(y-)2=16相交于M,N兩點(diǎn),且|MN|=|AB|,求橢圓的方程.
解:(1)設(shè),(),因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.1010pic.com/pic7/pages/60A2/4822/0021/f700b531f0e912366b9ff25939286b0e/C/Image104.gif" width=89 height=24>, 所以, 2分 代入,整理得, 即,解得. 5分 (2)由(1)知,可得橢圓方程為, 直線的方程為, 7分 A,B兩點(diǎn)坐標(biāo)滿足方程組,消y整理得, 解得或,所以A,B兩點(diǎn)坐標(biāo)為,, 所以由兩點(diǎn)間距離公式得|AB|=, 9分 于是|MN|=|AB|=,圓心到直線的距離, 因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.1010pic.com/pic7/pages/60A2/4822/0021/f700b531f0e912366b9ff25939286b0e/C/Image126.gif" width=121 height=41>,所以,解得, 所以橢圓方程為. 12分 |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:廣東省2007年五校聯(lián)考調(diào)研數(shù)學(xué)試卷(理科)-蘇教版 題型:013
設(shè)橢圓+=1(a>b>0)的半焦距為c,直線l過(guò)(0,a)和(b,0),已知原點(diǎn)到l的距離等于c,則橢圓的離心率為:
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013年普通高等學(xué)校招生全國(guó)統(tǒng)一考試天津卷文數(shù) 題型:044
設(shè)橢圓+=1(a>b>0)的左焦點(diǎn)為F,離心率為,過(guò)點(diǎn)F且與x軸垂直的直線被橢圓截得的線段長(zhǎng)為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)A,B分別為橢圓的左右頂點(diǎn),過(guò)點(diǎn)F且斜率為k的直線與橢圓交于C,D兩點(diǎn).若·+·=8,求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015屆福建晉江季延中學(xué)高二上學(xué)期期中考試文數(shù)學(xué)試卷(解析版) 題型:選擇題
設(shè)橢圓+=1(a>b>0)的離心率為e=,右焦點(diǎn)為F(c,0),方程ax2+bx-c=0的兩個(gè)實(shí)根分別為x1和x2,則點(diǎn)P(x1,x2)( )
A.必在圓x2+y2=2內(nèi) B.必在圓x2+y2=2上
C.必在圓x2+y2=2外 D.以上三種情形都有可能
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)橢圓+=1(a>b>0)的離心率為e=,右焦點(diǎn)為F(c,0),方程ax2+bx-c=0的兩個(gè)實(shí)根分別為x1和x2,則點(diǎn)P(x1,x2)( )
(A)必在圓x2+y2=2內(nèi)
(B)必在圓x2+y2=2上
(C)必在圓x2+y2=2外
(D)以上三種情形都有可能
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖所示,設(shè)橢圓+=1(a>b>0)的面積為abπ,過(guò)坐標(biāo)原點(diǎn)的直線l、x軸正半軸及橢圓圍成兩區(qū)域面積分別設(shè)為s、t,則s關(guān)于t的函數(shù)圖象大致形狀為圖中的
( )
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com