PF1 |
PF2 |
2 |
ON |
OM |
1 |
2 |
PA |
2 |
PF2 |
PF1 |
PF2 |
ON |
OM |
PF2 |
PA |
PF1 |
PF2 |
2 |
2 |
2 |
x2 |
2 |
ON |
OM |
x2 |
2 |
6 |
1+2k2 |
8k |
1+2k2 |
5 |
5 |
5 |
|
| ||
d |
| ||
2 |
2 |
PF2 |
PA |
2 |
PF2 |
PA |
PA |
PA |
| ||
2 |
1 |
2 |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(08年龍巖一中沖刺文)(分)已知雙曲線C的中心在原點(diǎn),焦點(diǎn)在x軸上,右準(zhǔn)線為一條漸近線的方程是過(guò)雙曲線C的右焦點(diǎn)F2的一條弦交雙曲線右支于P、Q兩點(diǎn),R是弦PQ的中點(diǎn).
(1)求雙曲線C的方程;
(2)若A、B分別是雙曲C上兩條漸近線上的動(dòng)點(diǎn),且2|AB|=|F1F2|,求線段AB的中點(diǎn)M的跡方程,并說(shuō)明該軌跡是什么曲線。
(3)若在雙曲線右準(zhǔn)線L的左側(cè)能作出直線m:x=a,使點(diǎn)R在直線m上的射影S滿足,當(dāng)點(diǎn)P在曲線C上運(yùn)動(dòng)時(shí),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年四川省成都市高三第二次診斷性檢測(cè)文科數(shù)學(xué)試卷(解析版) 題型:解答題
在平面直角坐標(biāo)系xOy中,已知ΔPAB的頂點(diǎn),P為動(dòng)點(diǎn), 且.記動(dòng)點(diǎn)P的軌跡為曲E
(I) 求曲線E的方程;
(II)設(shè)l是既不與AB平行也不與AB垂直的直線,且原點(diǎn)O到直線l的距離為,l與曲線E相交于不同的兩點(diǎn)G、H, 問(wèn)的值是否為定值?若為定值,求出此定值; 若不是, 請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com