已知服從正態(tài)分布N(μ,σ2)的隨機(jī)變量,在區(qū)間(μ-σ,μ+σ),(μ-2σ,μ+2σ)和(μ-3σ,μ+3σ)內(nèi)取值的概率分別為68.3%,95.4%和99.7%.某大型國有企業(yè)為10000名員工定制工作服,設(shè)員工的身高(單位:cm)服從正態(tài)分布N(173,52),則適合身高在163~183cm范圍內(nèi)員工穿的服裝大約要定制( )
A.6830套
B.9540套
C.9520套
D.9970套
【答案】分析:變量服從正態(tài)分布N(173,52),即服從均值為173cm,方差為25的正態(tài)分布,適合身高在163~183cm范圍內(nèi)取值即在(μ-2σ,μ+2σ)內(nèi)取值,其概率為:95.4%,從而得出適合身高在163~183cm范圍內(nèi)員工穿的服裝大約情況,得到結(jié)果.
解答:解:∵員工的身高(單位:cm)服從正態(tài)分布N(173,52),
即服從均值為173cm,方差為25的正態(tài)分布,
∵適合身高在163~183cm范圍內(nèi)取值即在(μ-2σ,μ+2σ)內(nèi)取值,其概率為:95.4%,
從而得出適合身高在163~183cm范圍內(nèi)員工穿的服裝大約套數(shù)是:
10000×95.4%=9540套
故選B
點(diǎn)評(píng):本題考查正態(tài)分布曲線的特點(diǎn)及曲線所表示的意義,考查曲線的變化特點(diǎn),本題是一個(gè)基礎(chǔ)題,不需要多少運(yùn)算