如圖,O是長方體ABCD-A1B1C1D1底面對角線AC與BD的交點,求證:B1O∥平面A1C1D.
分析:證明B1O∥O1D,利用線面平行的判定定理,即可證得結論.
解答:證明:連A1C1交B1D1于O1,連DO1
∵O1B1∥DO,O1B1=DO,
∴O1B1OD為平行四邊形,
∴B1O∥O1D
∵BO1?平面A1C1D,O1D?平面A1C1D,
∴B1O∥平面A1C1D.
點評:本題考查線面平行,考查學生分析解決問題的能力,正確運用線面平行的判定定理是關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網例2:如圖,在長方體ABCD-A1B1C1D1中,AB=AD=2AA1=4,點O是底面ABCD的中心,點E是A1D1的中點,點P是底面ABCD上的動點,且到直線OE的距離等于1,對于點P的軌跡,下列說法正確的是(  )
A、離心率為
2
2
的橢圓
B、離心率為
1
2
的橢圓
C、一段拋物線
D、半徑等于1的圓

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•安徽)如圖,長方體ABCD-A1B1C1D1 中,底面A1B1C1D1 是正方形,O是BD的中點,E是棱AA1上任意一點.
(Ⅰ)證明:BD⊥EC1
(Ⅱ)如果AB=2,AE=
2
,OE⊥EC1,求AA1的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知長方體ABCD-A1B1C1D1中,AB=3,AD=AA1=2,點O是線段BC1的中點,點M是OD的中點,點E是線段AB上一點,AE>BE,且A1E⊥OE.
①求AE的長;
②求二面角A1-DE-C的正切值;
③求三棱錐M-A1OE的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年四川省成都市六校高二(上)期中數(shù)學試卷(理科)(解析版) 題型:解答題

如圖,已知長方體ABCD-A1B1C1D1中,AB=3,AD=AA1=2,點O是線段BC1的中點,點M是OD的中點,點E是線段AB上一點,AE>BE,且A1E⊥OE.
①求AE的長;
②求二面角A1-DE-C的正切值;
③求三棱錐M-A1OE的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年四川省成都市六校高二(上)期中數(shù)學試卷(理科)(解析版) 題型:解答題

如圖,已知長方體ABCD-A1B1C1D1中,AB=3,AD=AA1=2,點O是線段BC1的中點,點M是OD的中點,點E是線段AB上一點,AE>BE,且A1E⊥OE.
①求AE的長;
②求二面角A1-DE-C的正切值;
③求三棱錐M-A1OE的體積.

查看答案和解析>>

同步練習冊答案