已知cosα=
1
7
,cos(α-β)=
13
14
,且0<α<β<
π
2
,則β=______.
由0<α<β<
π
2
,得到0<β-α<
π
2
,又cosα=
1
7
,cos(α-β)=cos(β-α)=
13
14

所以sinα=
1-(
1
7
)
2
=
4
3
7
,sin(β-α)=
1-cos2(β-α)
=
3
3
14

則cosβ=cos[(β-α)+α]
=cos(β-α)cosα-sin(β-α)sinα
=
13
14
×
1
7
-
3
3
14
×
4
3
7
=
1
2
,
所以β=
π
3

故答案為:
π
3
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知cosα=
1
7
,cos(α+β)=-
11
14
,且α,β∈(0,
π
2
)
,求cosβ的值;
(2)已知α為第二象限角,且sinα=
2
4
,求
cos(
π
4
-α)
cos2α-sin(2α-π)+1
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知cosα=
1
7
cos(α+β)=-
11
14
,α∈(0,
π
2
)
,α+β∈(
π
2
,π)
,則β=
π
3
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知cosα=
1
7
,cos(α-β)=
12
13
.且0<β<α<
π
2

(Ⅰ)求cos2α的值.
(Ⅱ)求cosβ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知cosα=
1
7
,cos(α-β)=
13
14
,且0<β<α<
π
2
,則cosβ=
1
2
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知cosα=
1
7
,cos(α-β)=
13
14
,且0<β<α<
π
2

(Ⅰ) 求
cos(π+2α)tan(π-2α)sin(
π
2
-2α)
cos(
π
2
+2α)
的值;
(Ⅱ)求cosβ及角β的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案