分析:根據(jù)恒等式f(x)+f(1-x)=1,和f(0)=0,賦值求出f(1),進(jìn)而求得f(
),然后利用f(
)的值和f(
)=
f(x),依次賦值,確定出f(
)的值,同理,確定出f(
),再根據(jù)題意判斷出函數(shù)在[0,1]上的單調(diào)性,從而限制了f(
)的范圍,即可得到f(
)的值.
解答:解:∵f(x)+f(1-x)=1,
令x=0,可得f(0)+f(1)=1,又f(0)=0,
∴f(1)=1,
令x=
,可得f(
)+f(
)=1,則f(
)=
,
∵f(
)=
f(x),
∴f(
)=
f(1)=
,
f(
)=
f(
)=
,
f(
)=
f(
)=
,
f(
)=
f(
)=
,
f(
)=
f(
)=
,
再根據(jù)f(
)=
f(x),可得
f(
)=
f(
)=
,
f(
)=
f(
)=
,
f(
)=
f(
)=
,
f(
)=
f(
)=
,
∵當(dāng)0≤x
1<x
2≤1時(shí),f(x
1)≤f(x
2),
∴f(x)在[0,1]上單調(diào)遞增,
由f(
)≤f(
)≤f(
),且f(
)=f(
)=
,
∴f(
)=
.
故答案為:
.
點(diǎn)評(píng):本題考查了抽象函數(shù)及其應(yīng)用,利用賦值法求解抽象函數(shù)的函數(shù)值,涉及了函數(shù)單調(diào)性的定義,證明函數(shù)的單調(diào)性要抓住函數(shù)單調(diào)性的定義.本題的關(guān)鍵是利用函數(shù)的單調(diào)性得到函數(shù)值得限制范圍,從而能確定函數(shù)的值.屬于中檔題.