非空集合G關(guān)于運算滿足:
(1)對任意的a,b∈G,都有ab∈G,
(2)存在e∈G,都有ae=ea=a,則稱G關(guān)于運算為“融洽集”。
現(xiàn)給出下列集合和運算:
①G={非負整數(shù)},為整數(shù)的加法;
②G={偶數(shù)},為整數(shù)的乘法;
③G={平面向量},為平面向量的加法;
④G={二次三項式},為多項式的加法;
⑤G={虛數(shù)},為復(fù)數(shù)的乘法。
其中G關(guān)于運算為“融洽集”的是(    )。(寫出所有“融洽集”的序號)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

16、非空集合G關(guān)于運算⊕滿足:①對于任意a、b∈G,都有a⊕b∈G;②存在e∈G,使對一切a∈G都有a⊕e=e⊕a=a,則稱G關(guān)于運算⊕為和諧集,現(xiàn)有下列命題:
①G={a+bi|a,b為偶數(shù)},⊕為復(fù)數(shù)的乘法,則G為和諧集;
②G={二次三項式},⊕為多項式的加法,則G不是 和諧集;
③若⊕為實數(shù)的加法,G⊆R且G為和諧集,則G要么為0,要么為無限集;
④若⊕為實數(shù)的乘法,G⊆R且G為和諧集,則G要么為0,要么為無限集,其中正確的有
②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•廣元一模)非空集合G關(guān)于運算?滿足:①對任意a、b∈G,都有a?b∈G:;②存在e∈G,對一切a∈G,都 有a?e=e?a=a,則稱G關(guān)于運算?為“和諧集”,現(xiàn)給出下列集合和運算:
①G={非負整數(shù)},?為整數(shù)的加法;
②G={偶數(shù)},?為整數(shù)的乘法;
③G={平面向量},?為平面向量的加法;
④G={二次三項式},?為多項式的加法.
其中關(guān)于運算?為“和諧集”的是
①③
①③
(寫出所有“和諧集”的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

非空集合G關(guān)于運算⊕滿足:(1)對任意a、b∈G,都有a⊕b∈G;(2)存在c∈G,使得對一切a∈G,都有a⊕c=c⊕a=a,則稱G關(guān)于運算⊕為“融洽集”.現(xiàn)給出下列集合和運算:
①G={非負整數(shù)},⊕為整數(shù)的加法;
②G={偶數(shù)},⊕為整數(shù)的乘法;
③G={平面向量},⊕為平面向量的加法;
④G={二次三項式},⊕為多項式的加法.
其中G關(guān)于運算⊕為“融洽集”的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

非空集合G關(guān)于運算⊕滿足:(1)對任意a,b∈G,都有a⊕b∈G;(2)存在e∈G,使得對一切a∈G,都有a⊕e=e⊕a=a,則稱G關(guān)于運算⊕為“融洽集”;現(xiàn)給出下列集合和運算:①G={非負整數(shù)},⊕為整數(shù)的加法;   ②G={函數(shù)},⊕為函數(shù)的和;③G={不等式},⊕為同向不等式的加法;④G={虛數(shù)},⊕為復(fù)數(shù)的乘法.其中G關(guān)于運算⊕為“融洽集”的是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•西安二模)非空集合G關(guān)于運算⊕滿足,①對任意a、b∈G,都有a⊕b∈G; ②存在e∈G,使對一切a∈G都有a⊕e=e⊕a=a,則稱G關(guān)于運算⊕的融洽集.現(xiàn)有下列集合和運算:
(1)G={非負整數(shù)},⊕整數(shù)的加法;
(2)G={偶數(shù)},⊕整數(shù)的乘法; 
(3)G={平面向量},⊕平面向量的加法.
其中為融洽集的個數(shù)是( 。

查看答案和解析>>

同步練習(xí)冊答案