(文科做)在平面直角坐標(biāo)系中,拋物線的頂點(diǎn)是坐標(biāo)原點(diǎn)且經(jīng)過(guò)點(diǎn),其焦點(diǎn)軸上,求拋物線方程.

 

【答案】

【解析】解:由題知,設(shè)拋物線的方程為(p>0)

        ∵過(guò)點(diǎn)   ∴4=2p*2     p=1

        ∴拋物線的方程是

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•鹽城模擬)(本題文科學(xué)生做)如圖,在平面直角坐標(biāo)系xoy中,已知F1(-4,0),F(xiàn)2(4,0),A(0,8),直線y=t(0<t<8)與線段AF1、AF2分別交于點(diǎn)P、Q.
(Ⅰ)當(dāng)t=3時(shí),求以F1,F(xiàn)2為焦點(diǎn),且過(guò)PQ中點(diǎn)的橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)點(diǎn)Q作直線QR∥AF1交F1F2于點(diǎn)R,記△PRF1的外接圓為圓C.
①求證:圓心C在定直線7x+4y+8=0上;
②圓C是否恒過(guò)異于點(diǎn)F1的一個(gè)定點(diǎn)?若過(guò),求出該點(diǎn)的坐標(biāo);若不過(guò),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年廣東省佛山市南海區(qū)高三(上)入學(xué)摸底數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

(本題文科學(xué)生做)如圖,在平面直角坐標(biāo)系xoy中,已知F1(-4,0),F(xiàn)2(4,0),A(0,8),直線y=t(0<t<8)與線段AF1、AF2分別交于點(diǎn)P、Q.
(Ⅰ)當(dāng)t=3時(shí),求以F1,F(xiàn)2為焦點(diǎn),且過(guò)PQ中點(diǎn)的橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)點(diǎn)Q作直線QR∥AF1交F1F2于點(diǎn)R,記△PRF1的外接圓為圓C.
①求證:圓心C在定直線7x+4y+8=0上;
②圓C是否恒過(guò)異于點(diǎn)F1的一個(gè)定點(diǎn)?若過(guò),求出該點(diǎn)的坐標(biāo);若不過(guò),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省鹽城市東臺(tái)中學(xué)高三(上)數(shù)學(xué)階段練習(xí)(一)(解析版) 題型:解答題

(本題文科學(xué)生做)如圖,在平面直角坐標(biāo)系xoy中,已知F1(-4,0),F(xiàn)2(4,0),A(0,8),直線y=t(0<t<8)與線段AF1、AF2分別交于點(diǎn)P、Q.
(Ⅰ)當(dāng)t=3時(shí),求以F1,F(xiàn)2為焦點(diǎn),且過(guò)PQ中點(diǎn)的橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)點(diǎn)Q作直線QR∥AF1交F1F2于點(diǎn)R,記△PRF1的外接圓為圓C.
①求證:圓心C在定直線7x+4y+8=0上;
②圓C是否恒過(guò)異于點(diǎn)F1的一個(gè)定點(diǎn)?若過(guò),求出該點(diǎn)的坐標(biāo);若不過(guò),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省鹽城市高三摸底數(shù)學(xué)試卷(解析版) 題型:解答題

(本題文科學(xué)生做)如圖,在平面直角坐標(biāo)系xoy中,已知F1(-4,0),F(xiàn)2(4,0),A(0,8),直線y=t(0<t<8)與線段AF1、AF2分別交于點(diǎn)P、Q.
(Ⅰ)當(dāng)t=3時(shí),求以F1,F(xiàn)2為焦點(diǎn),且過(guò)PQ中點(diǎn)的橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)點(diǎn)Q作直線QR∥AF1交F1F2于點(diǎn)R,記△PRF1的外接圓為圓C.
①求證:圓心C在定直線7x+4y+8=0上;
②圓C是否恒過(guò)異于點(diǎn)F1的一個(gè)定點(diǎn)?若過(guò),求出該點(diǎn)的坐標(biāo);若不過(guò),請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案