已知圓M:(x+cosq)2+(y-sinq)2=1,直線l:y=kx,下面四個命題:
(A)對任意實數(shù)k與q,直線l和圓M相切;
(B)對任意實數(shù)k與q,直線l和圓M有公共點;
(C)對任意實數(shù)q,必存在實數(shù)k,使得直線l與和圓M相切
(D)對任意實數(shù)k,必存在實數(shù)q,使得直線l與和圓M相切
其中真命題的代號是(B)(D)(B)(D).(寫出所有真命題的代號)
圓心坐標為(-cosq,sinq),圓的半徑為1
圓心到直線的距離d=
|-kcosθ-sinθ|
1+k2
=
1+k2
|sin(θ+φ)|
1+k2

=|sin(θ+φ)|≤1(其中sinφ=-
k
1+k2
,cosφ=-
1
1+k2

所以直線l與圓M有公共點,且對于任意實數(shù)k,必存在實數(shù)q,使直線l與圓M相切,
故答案為:(B)(D)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

 (本題滿分15分)17. (本小題滿分15分)已知圓C:,圓C關(guān)于直線對稱,圓心在第二象限,半徑為。W ww.k s5 u.co m

(Ⅰ)求圓C的方程;

(Ⅱ)已知不過原點的直線與圓C相切,且在x軸、y軸上的截距相等,求直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

 (本題滿分15分)17. (本小題滿分15分)已知圓C:,圓C關(guān)于直線對稱,圓心在第二象限,半徑為W ww.k s5 u.co m

(Ⅰ)求圓C的方程;

(Ⅱ)已知不過原點的直線與圓C相切,且在x軸、y軸上的截距相等,求直線的方程。

查看答案和解析>>

同步練習(xí)冊答案