已知?jiǎng)狱c(diǎn)P到直線的距離是到定點(diǎn)()的距離的倍.

(Ⅰ)求動(dòng)點(diǎn)P的軌跡方程;

(Ⅱ)如果直線lyk(x+1)(k≠0)與P點(diǎn)的軌跡有兩個(gè)交點(diǎn)A、B,求弦AB的垂直平分線在y軸上的截距y0的取值范圍.

答案:
解析:

  解:(Ⅰ)設(shè)動(dòng)點(diǎn)P(x,y),由題意知

  ∴

  即動(dòng)點(diǎn)P的軌跡方程是

  (Ⅱ)聯(lián)立方程組

  得:

  從而

  弦AB的中點(diǎn)坐標(biāo)為:

  弦AB的線段垂直平分線方程為

  所以垂直平分線在y軸上的截距為:,(k≠0).

  故弦AB的線段垂直平分線在y軸上的截距的取值范圍為

  命題意圖:對(duì)解析幾何兩大基本問(wèn)題:①求軌跡;②通過(guò)方程研究曲線性質(zhì)進(jìn)行再梳理.軌跡方程的求法一般分為直接法和間接法.直接法的步驟:建系設(shè)點(diǎn),找等量關(guān)系,列方程,化簡(jiǎn),檢驗(yàn);間接法的關(guān)鍵是找參數(shù).如果明確說(shuō)直線與圓錐曲線有兩個(gè)不同的交點(diǎn),一般是考查判別式與根系關(guān)系的應(yīng)用.取值范圍一般是函數(shù)的值域或不等式(組)的解集.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知?jiǎng)狱c(diǎn)P到直線l:x=--
4
3
3
的距離d1,是到定點(diǎn)F(-
3
,0
)的距離d2
2
3
3
倍.
(1) 求動(dòng)點(diǎn)P的軌跡方程;
(2) 若直線m:y=k(x+1)(k≠o)與點(diǎn)P的軌跡有兩個(gè)交點(diǎn)A、B,求弦AB的中垂線n在y軸上的截距y0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知?jiǎng)狱c(diǎn)P到直線l:x=--
4
3
3
的距離d1,是到定點(diǎn)F(-
3
,0
)的距離d2
2
3
3
倍.
(1) 求動(dòng)點(diǎn)P的軌跡方程;
(2) 若直線m:y=k(x+1)(k≠o)與點(diǎn)P的軌跡有兩個(gè)交點(diǎn)A、B,求弦AB的中垂線n在y軸上的截距y0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年四川省成都市樹德中學(xué)高三(下)入學(xué)數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知?jiǎng)狱c(diǎn)P到直線l:x=-的距離d1,是到定點(diǎn)F(-)的距離d2倍.
(1) 求動(dòng)點(diǎn)P的軌跡方程;
(2) 若直線m:y=k(x+1)(k≠o)與點(diǎn)P的軌跡有兩個(gè)交點(diǎn)A、B,求弦AB的中垂線n在y軸上的截距y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009年北京101中學(xué)高考數(shù)學(xué)三模試卷(文科)(解析版) 題型:解答題

已知?jiǎng)狱c(diǎn)P到直線l:x=-的距離d1,是到定點(diǎn)F(-)的距離d2倍.
(1) 求動(dòng)點(diǎn)P的軌跡方程;
(2) 若直線m:y=k(x+1)(k≠o)與點(diǎn)P的軌跡有兩個(gè)交點(diǎn)A、B,求弦AB的中垂線n在y軸上的截距y的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案