3、已知cosθ<0且tanθ<0,那么角θ是第
象限角.
分析:利用三角函數(shù)在各個(gè)象限的符號(hào),直接判斷θ所在象限.
解答:解:cosθ<0所以θ的終邊在y軸左側(cè),tanθ<0,所以θ的終邊在二、四象限,所以θ是第二象限角.
故答案為:二.
點(diǎn)評(píng):熟悉三角函數(shù)在各個(gè)象限的符號(hào)是本題的解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
p
=(-cos 2x,a),
q
=(a,2-
3
sin 2x),函數(shù)f(x)=
p
q
-5(a∈R,a≠0).
(1)求函數(shù)f(x)(x∈R)的值域;
(2)當(dāng)a=2時(shí),若對(duì)任意的t∈R,函數(shù)y=f(x),x∈(t,t+b]的圖象與直線y=-1有且僅有兩個(gè)不同的交點(diǎn),試確定b的值(不必證明),并求函數(shù)y=f(x)的在[0,b]上單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•唐山二模)選修4-4:坐標(biāo)系與參數(shù)方程
極坐標(biāo)系的極點(diǎn)為直角坐標(biāo)系xOy的原點(diǎn),極軸為z軸的正半軸,兩種坐標(biāo)系的長度單位相同,己知圓C1的極坐標(biāo)方程為p=4(cosθ+sinθ,P是C1上一動(dòng)點(diǎn),點(diǎn)Q在射線OP上且滿足OQ=
1
2
OP,點(diǎn)Q的軌跡為C2
(I)求曲線C2的極坐標(biāo)方程,并化為直角坐標(biāo)方程;
( II)已知直線l的參數(shù)方程為
x=2+tcosφ
y=tsinφ
(t為參數(shù),0≤φ<π),l與曲線C2有且只有一個(gè)公共點(diǎn),求φ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l1的參數(shù)方程為
x=-3+
2
2
t
y=-
3
2
+
2
2
t
(t是參數(shù)),直線l2的極坐標(biāo)方程為ρ(2sinθ+cosθ)+6=0
(1)求直線l1與直線l2的交點(diǎn)P的坐標(biāo)
(2)若直線l過點(diǎn)P,且與圓C:
x=5cosθ
y=5sinθ
(θ為參數(shù))相交于A、B兩點(diǎn),|AB|=8,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-4:坐標(biāo)系與參數(shù)方程
已知在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為
x=t-3
y=
3
t
(t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,曲線C的極坐標(biāo)方程為ρ2-4ρcosθ+3=0.
①求直線l普通方程和曲線C的直角坐標(biāo)方程;
②設(shè)點(diǎn)P是曲線C上的一個(gè)動(dòng)點(diǎn),求它到直線L的距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+
π
6
)(x∈R)(A,ω>0)的最小正周期為T=6π,且f(2π)=2.
(1)求函數(shù)y=f(x)的單調(diào)遞增區(qū)間;
(2)設(shè)α,β∈[0,
π
2
],f(3α+π)=
16
5
,f(3β+
2
)=-
20
13
;求cos(α-β)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案