已知函數(shù)f(x)=xlnx.
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)若f(x)≥-x2+ax-6在(0,+∞)上恒成立,求實(shí)數(shù)a的取值范圍;
(3)過(guò)點(diǎn)A(-e-2,0)作函數(shù)y=f(x)圖象的切線,求切線方程.
【答案】
分析:(1)在定義域內(nèi)解不等式f′(x)<0即可;
(2)分離參數(shù)a后轉(zhuǎn)化為求函數(shù)的最值問(wèn)題解決;
(3)設(shè)切點(diǎn)為T(x
,y
),由K
AT=f′(x
),得一方程,構(gòu)造函數(shù)轉(zhuǎn)化為函數(shù)零點(diǎn)處理.
解答:解:(Ⅰ)f(x)的定義域?yàn)椋?,+∞),f′(x)=lnx+1,由f′(x)<0得lnx<-1,∴0<x<
,
∴函數(shù)f(x)的單調(diào)遞減區(qū)間是(0,
);
(Ⅱ)f(x)≥-x
2+ax-6,即a≤lnx+x+
,
設(shè)g(x)=lnx+x+
,則g′(x)=
=
,
當(dāng)x∈(0,2)時(shí),g′(x)<0,函數(shù)g(x)單調(diào)遞減;
當(dāng)x∈(2,+∞)時(shí),g′(x)>0,函數(shù)g(x)單調(diào)遞增;
∴g(x)最小值g(2)=5+ln2,
∴實(shí)數(shù)a的取值范圍是(-∞,5+ln2];
(Ⅲ)設(shè)切點(diǎn)T(x
,y
),則K
AT=f′(x
),∴
,即e
2x
+lnx
+1=0.
設(shè)h(x)=e
2x+lnx+1,當(dāng)x>0時(shí),h′(x)>0,∴h(x)是單調(diào)遞增函數(shù),
∴h(x)=0最多只有一個(gè)根,又h(
)=
,∴
.
由f′(x
)=-1,得切線方程是x+y+
=0.
點(diǎn)評(píng):本題考查了導(dǎo)數(shù)的幾何意義及綜合運(yùn)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、最值問(wèn)題.對(duì)于不等式恒成立問(wèn)題往往轉(zhuǎn)化為最值問(wèn)題解決,注意區(qū)分過(guò)某點(diǎn)的切線與某點(diǎn)處的切線的區(qū)別.