已知函數(shù)f(x)=xlnx.
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)若f(x)≥-x2+ax-6在(0,+∞)上恒成立,求實數(shù)a的取值范圍;
(3)過點A(-e-2,0)作函數(shù)y=f(x)圖象的切線,求切線方程.
【答案】
分析:(1)在定義域內(nèi)解不等式f′(x)<0即可;
(2)分離參數(shù)a后轉(zhuǎn)化為求函數(shù)的最值問題解決;
(3)設切點為T(x
,y
),由K
AT=f′(x
),得一方程,構(gòu)造函數(shù)轉(zhuǎn)化為函數(shù)零點處理.
解答:解:(Ⅰ)f(x)的定義域為(0,+∞),f′(x)=lnx+1,由f′(x)<0得lnx<-1,∴0<x<
,
∴函數(shù)f(x)的單調(diào)遞減區(qū)間是(0,
);
(Ⅱ)f(x)≥-x
2+ax-6,即a≤lnx+x+
,
設g(x)=lnx+x+
,則g′(x)=
=
,
當x∈(0,2)時,g′(x)<0,函數(shù)g(x)單調(diào)遞減;
當x∈(2,+∞)時,g′(x)>0,函數(shù)g(x)單調(diào)遞增;
∴g(x)最小值g(2)=5+ln2,
∴實數(shù)a的取值范圍是(-∞,5+ln2];
(Ⅲ)設切點T(x
,y
),則K
AT=f′(x
),∴
,即e
2x
+lnx
+1=0.
設h(x)=e
2x+lnx+1,當x>0時,h′(x)>0,∴h(x)是單調(diào)遞增函數(shù),
∴h(x)=0最多只有一個根,又h(
)=
,∴
.
由f′(x
)=-1,得切線方程是x+y+
=0.
點評:本題考查了導數(shù)的幾何意義及綜合運用導數(shù)研究函數(shù)的單調(diào)性、最值問題.對于不等式恒成立問題往往轉(zhuǎn)化為最值問題解決,注意區(qū)分過某點的切線與某點處的切線的區(qū)別.