精英家教網 > 高中數學 > 題目詳情

(本小題12分)設函數,
(1)求的周期和對稱中心;
(2)求上值域.

(1) ;(2)

解析試題分析:(1)先求,再求g(x)的解析式,然后根據正弦型函數的性質,求周期和對稱中心;
(2)由x,求出,再由正弦函數的性質即可求出所求值域.
試題解析:(1)=cosx-sinx,
=(cosx+sinx)(cosx-sinx)+(cosx+sinx)2= 
所以g(x)的周期T=,
 得       
所以的對稱中心為
(2)因為,所以,
所以
考點:1.求函數的導數;2.二倍角公式;3.正弦函數的性質.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數,其中為常數,為自然對數的底數.
(1)求的單調區(qū)間;
(2)若,且在區(qū)間上的最大值為,求的值;
(3)當時,試證明:.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

湖北宜昌“三峽人家”風景區(qū)為提高經濟效益,現對某一景點進行改造升級,從而擴大內需,提高旅游增加值,經過市場調查,旅游增加值萬元與投入萬元之間滿足:為常數,當萬元時,萬元;當萬元時,萬元.(參考數據:,,
(Ⅰ)求的解析式;
(Ⅱ)求該景點改造升級后旅游利潤的最大值.(利潤=旅游收入-投入)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)當時,求函數的極值;
(2)若在區(qū)間上單調遞增,試求的取值或取值范圍

查看答案和解析>>

科目:高中數學 來源: 題型:解答題


(Ⅰ)討論函數的單調性;
(Ⅱ)若,證明:時,成立

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,為函數的導函數.
(1)設函數f(x)的圖象與x軸交點為A,曲線y=f(x)在A點處的切線方程是,求的值;
(2)若函數,求函數的單調區(qū)間.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數,其中為常數。
(Ⅰ)當時,判斷函數在定義域上的單調性;
(Ⅱ)若函數有極值點,求的取值范圍及的極值點。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,.
(1)當時,求曲線在點處的切線方程;
(2)若在區(qū)間上是減函數,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(1)試問的值是否為定值?若是,求出該定值;若不是,請說明理由;
(2)定義,其中,求;
(3)在(2)的條件下,令.若不等式恒成立,求實數的取值范圍.

查看答案和解析>>

同步練習冊答案