已知函數(shù)f(x)=plnx+(p-1)x2+1.
(1)討論函數(shù)f(x)的單調(diào)性;
(2)當(dāng)P=1時(shí),f(x)≤kx恒成立,求實(shí)數(shù)k的取值范圍;
(3)證明:1n(n+1)<1+…+(n∈N+).
【答案】分析:(1)利用導(dǎo)數(shù)來討論函數(shù)的單調(diào)性即可,具體的步驟是:(1)確定 f(x)的定義域;(2)求導(dǎo)數(shù)fˊ(x);(3)在函數(shù) 的定義域內(nèi)解不等式fˊ(x)>0和fˊ(x)<0;(4)確定 的單調(diào)區(qū)間.若在函數(shù)式中含字母系數(shù),往往要分類討論.(2)當(dāng)P=1時(shí),f(x)≤kx恒成立,分離參數(shù)等價(jià)于k≥,利用導(dǎo)數(shù)求函數(shù)h(x)=的最大值即可求得實(shí)數(shù)k的取值范圍;(3)由(2)知,當(dāng)k=1時(shí),有f(x)≤x,當(dāng)x>1時(shí),f(x)<x,即lnx<x-1,令x=,則得到,利用導(dǎo)數(shù)的運(yùn)算法則進(jìn)行化簡,然后再相加,即可證得結(jié)論.
解答:解:(1)f(x)的定義域?yàn)椋?,+∞),f′(x)=,
當(dāng)p>1時(shí),f′(x)>0,故f(x)在(0,+∞)上單調(diào)遞增;
當(dāng)p≤0時(shí),f′(x)<0,故f(x)在(0,+∞)上單調(diào)遞減;
當(dāng)0<p<1時(shí),令f′(x)=0,解得x=
則當(dāng)x時(shí),f′(x)>0;x時(shí),f′(x)<0,
故f(x)在(0,)上單調(diào)遞增,在上單調(diào)遞減;
(2)∵x>0,
∴當(dāng)p=1時(shí),f(x)≤kx恒成立?1+lnx≤kx?k≥,
令h(x)=,則k≥h(x)max,
∵h(yuǎn)′(x)==0,得x=1,
且當(dāng)x∈(0,1),h′(x)>0;當(dāng)x∈(1,+∞),h′(x)<0;
所以h(x)在0,1)上遞增,在(1,+∞)上遞減,
所以h(x)max=h(1)=1,
故k≥1.
(3)由(2)知,當(dāng)k=1時(shí),有f(x)≤x,當(dāng)x>1時(shí),f(x)<x,即lnx<x-1,
∴令x=,則,即,
∴l(xiāng)n2-ln1<1,
相加得1n(n+1)<1+…+
點(diǎn)評:此題是個(gè)難題.本題主要考查導(dǎo)數(shù)的概念、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、利用函數(shù)的單調(diào)性證明不等式和利用導(dǎo)數(shù)研究函數(shù)性質(zhì)的能力,考查分類討論思想、數(shù)形結(jié)合思想和等價(jià)變換思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
23
x3-2ax2+3x(x∈R).
(1)若a=1,點(diǎn)P為曲線y=f(x)上的一個(gè)動(dòng)點(diǎn),求以點(diǎn)P為切點(diǎn)的切線斜率取最小值時(shí)的切線方程;
(2)若函數(shù)y=f(x)在(0,+∞)上為單調(diào)增函數(shù),試求滿足條件的最大整數(shù)a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義:兩個(gè)連續(xù)函數(shù)(圖象不間斷)f(x)、g(x)在區(qū)間[a,b]上都有意義,則稱函數(shù)|f(x)+g(x)|在[a,b]上的最大值叫做函數(shù)f(x)與g(x)在區(qū)間[a,b]上的“絕對和”.已知函數(shù)f(x)=x3,g(x)=x3-3ax2+2.
(Ⅰ)若函數(shù)y=g(x)在點(diǎn)P(1,g(1))處的切線與直線y=x+2平行,求a的值;
(Ⅱ)在(Ⅰ)的條件下求漢順f(x)與g(x)在區(qū)間[0,2]上的“絕對值”
(Ⅲ)記f(x)與g(x)在區(qū)間[0,2]上的“絕對和”為h(a),a>
32
,且h(a)=2,試求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax3+bx2+c(a,b,c∈R,a≠0)的圖象過點(diǎn)P( 1,2),且在點(diǎn)P處的切線與直線x-3y=0垂直.
(1)若c∈[0,1),試求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若a>0,b>0且(-∞,m),(n,+∞)是f(x)的單調(diào)遞增區(qū)間,試求n-m-2c的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•河北模擬)已知函數(shù)f(x)=alnx-bx2的圖象上一點(diǎn)P(2,f(2))處的切線方程為y=-3x+2ln2.
(Ⅰ)求a,b的值;
(Ⅱ)設(shè)g(x)=f(x)-mx,m∈R,如果g(x)的圖象與x軸交于點(diǎn)A(x1,0),B(x2,0),(x1<x2),AB中點(diǎn)為C(x0,0),求證:g′(x0)≠0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二階矩陣M=(
a1
0b
)有特征值λ1=2及對應(yīng)的一個(gè)特征向量
e
1
=
1
1

(Ⅰ)求矩陣M;
(II)若
a
=
2
1
,求M10
a

(2)已知直線l:
x=1+
1
2
t
y=
3
2
t
(t為參數(shù)),曲線C1
x=cosθ
y=sinθ
  (θ為參數(shù)).
(Ⅰ)設(shè)l與C1相交于A,B兩點(diǎn),求|AB|;
(Ⅱ)若把曲線C1上各點(diǎn)的橫坐標(biāo)壓縮為原來的
1
2
倍,縱坐標(biāo)壓縮為原來的
3
2
倍,得到曲線C2C,設(shè)點(diǎn)P是曲線C2上的一個(gè)動(dòng)點(diǎn),求它到直線l的距離的最小值.
(3)已知函數(shù)f(x)=log2(|x+1|+|x-2|-m).
(Ⅰ)當(dāng)m=5時(shí),求函數(shù)f(x)的定義域;
(Ⅱ)若關(guān)于x的不等式f(x)≥1的解集是R,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案