已知x的方程-2(a-3)x+9-=0,其中的a,b都可以從集合{1,2,3,4,5,6}中任意選取,求:

(1)x=0是已知方程的根的概率;

(2)已知方程有兩個(gè)正數(shù)根的概率.

答案:
解析:

解:(1)x=0是已知方程根的條件為9-=0.于是得b=3.而其中a可取給定集合中的任意數(shù).故所求概率為

(2)已知方程有兩個(gè)正數(shù)根的條件是

由于 a,b∈{1,2,3,4,5,6},可得a=6,b=1或a=6,b=2.于是所求概率為


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:專(zhuān)項(xiàng)題 題型:解答題

已知橢圓Γ的方程為(a>b>0),A(0,b),B(0,-b)和 Q(a,0)為Γ的三個(gè)頂點(diǎn)。
(1)若點(diǎn)M滿足,求點(diǎn)M的坐標(biāo);
(2)設(shè)直線l1:y=k1x+p交橢圓Γ于C,D兩點(diǎn),交直線l2:y=k2x于點(diǎn)E,若,證明:E為CD的中點(diǎn);
(3)設(shè)點(diǎn)P在橢圓Γ內(nèi)且不在x軸上,如何作過(guò)PQ中點(diǎn)F的直線l,使得l與橢圓Γ的兩個(gè)交點(diǎn)P1,P2滿足?令a=10,b=5,點(diǎn)P的坐標(biāo)是(-8,-1)。若橢圓Γ上的點(diǎn)P1,P2滿足,求點(diǎn)P1,P2的坐標(biāo)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的方程x2-2(a+2)x+a2-1=0的兩根,一根在區(qū)間(0,1)內(nèi),另一根在(1,2)內(nèi),求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的方程為=1(a>b>0),過(guò)其左焦點(diǎn)F(-1,0)、斜率為1的直線交橢圓于P、Q兩點(diǎn).

(1)若與a=(-3,1)共線,求橢圓的方程;

(2)若在左準(zhǔn)線上存在點(diǎn)R,使△PQR為正三角形,求橢圓的離心率e.

(文)已知函數(shù)f(x)=2x(x>0),g(x)=.

(1)求F(x)=2f(x)+[g(x)]2的最小值;

(2)在x軸正半軸上有一動(dòng)點(diǎn)C(x,0),過(guò)C作x軸的垂線分別與f(x)、g(x)的圖象交于點(diǎn)A、B,試將△AOC與△BOC的面積的平方差表示為x的函數(shù)h(x),并判斷h(x)是否存在極值,若存在,求出極值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年高考數(shù)學(xué)試卷精編:8.1 橢圓(解析版) 題型:解答題

已知橢圓Γ的方程為,A(0,b)、B(0,-b)和Q(a,0)為Γ的三個(gè)頂點(diǎn).
(1)若點(diǎn)M滿足,求點(diǎn)M的坐標(biāo);
(2)設(shè)直線l1:y=k1x+p交橢圓Γ于C、D兩點(diǎn),交直線l2:y=k2x于點(diǎn)E.若,證明:E為CD的中點(diǎn);
(3)設(shè)點(diǎn)P在橢圓Γ內(nèi)且不在x軸上,如何構(gòu)作過(guò)PQ中點(diǎn)F的直線l,使得l與橢圓Γ的兩個(gè)交點(diǎn)P1、P2滿足?令a=10,b=5,點(diǎn)P的坐標(biāo)是(-8,-1),若橢圓Γ上的點(diǎn)P1、P2滿足,求點(diǎn)P1、P2的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案