分析 (1)取B1C1的中點(diǎn)G,D1C1的中點(diǎn)H,連結(jié)BG,GH,DH,則平面BDHG就是所求的平面α.
(2)取BC中點(diǎn)M,以D為原點(diǎn),DA為x軸,DM為y軸,DD1為z軸,建立空間直角坐標(biāo)系,利用向量法能求出點(diǎn)C到所作截面α的距離.
解答 解:(1)取B1C1的中點(diǎn)G,D1C1的中點(diǎn)H,連結(jié)BG,GH,DH,
則平面BDHG就是所求的平面α,α與直棱柱ABCD-A1B1C1D1的截面即為平面BDHG.
(2)取BC中點(diǎn)M,∵AB=AA1=2,∠BAD=60°,
∴以D為原點(diǎn),DA為x軸,DM為y軸,DD1為z軸,
建立空間直角坐標(biāo)系,
C(-1,$\sqrt{3}$,0),D(0,0,0),B(1,$\sqrt{3}$,0),
G(0,$\sqrt{3}$,2),
$\overrightarrow{DB}$=(1,$\sqrt{3}$,0),$\overrightarrow{DG}$=(0,$\sqrt{3}$,2),$\overrightarrow{DC}$=(-1,$\sqrt{3}$,0),
設(shè)平面BDG的法向量$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{DB}=x+\sqrt{3}y=0}\\{\overrightarrow{n}•\overrightarrow{DG}=\sqrt{3}y+2z=0}\end{array}\right.$,取y=1,得$\overrightarrow{n}$=(2$\sqrt{3}$,-2,$\sqrt{3}$),
∴點(diǎn)C到所作截面α的距離:
d=$\frac{|\overrightarrow{n}•\overrightarrow{DC}|}{|\overrightarrow{n}|}$=$\frac{4\sqrt{3}}{2\sqrt{19}}$=$\frac{2\sqrt{57}}{19}$.
點(diǎn)評 本題主要考查滿足條件的平面的作法,考查點(diǎn)到直線的距離的求法,考查直線與直線、直線與平面、平面與平面的位置關(guān)系等基礎(chǔ)知識;考查學(xué)生的空間想象能力、推理論證能力及運(yùn)算求解能力;考查了化歸與轉(zhuǎn)化及數(shù)形結(jié)合的數(shù)學(xué)思想.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分條件 | B. | 必要條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $-\frac{1}{2}i$ | C. | $\frac{1}{2}i$ | D. | $-\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -3 | B. | -5 | C. | -6 | D. | -9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
支持生二孩 | 不支持生二孩 | 合計(jì) | |
男性 | 40 | 15 | 55 |
女性 | 20 | 25 | 45 |
合計(jì) | 60 | 40 | 100 |
P(K2≥k0) | 0.150 | 0.100 | 0.050 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com