【題目】在平面直角坐標(biāo)系中,橢圓的左、右焦點(diǎn)分別為、,為橢圓短軸端點(diǎn),若為直角三角形且周長(zhǎng)為.

1)求橢圓的方程;

2)若直線與橢圓交于兩點(diǎn),直線,斜率的乘積為,求的取值范圍.

【答案】1;(2

【解析】

1)根據(jù)的形狀以及周長(zhǎng),計(jì)算出的值,從而橢圓的方程可求;

2)分類討論直線的斜率是否存在:若不存在,直接分析計(jì)算即可;若存在,聯(lián)立直線與橢圓方程,得到坐標(biāo)對(duì)應(yīng)的韋達(dá)定理形式,再根據(jù)條件將直線方程中的參數(shù)關(guān)系找到,由此即可化簡(jiǎn)計(jì)算出的取值范圍.

1)因?yàn)?/span>為直角三角形,所以,

周長(zhǎng)為,所以,故,,,

所以橢圓.

2)設(shè),當(dāng)直線斜率不存在時(shí),

,,所以

,解得,,.

當(dāng)直線斜率存在時(shí),設(shè)直線方程為

,

,

,即,

所以

所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在中,角的對(duì)邊分別為,且.

(1)求的值;

(2)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),(.

1)若曲線在點(diǎn)處的切線方程為,求實(shí)數(shù)a、m的值;

2)若對(duì)任意恒成立,求實(shí)數(shù)a的取值范圍;

3)關(guān)于x的方程能否有三個(gè)不同的實(shí)根?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線Γy22pxp0)的焦點(diǎn)為F,P是拋物線Γ上一點(diǎn),且在第一象限,滿足2,2

1)求拋物線Γ的方程;

2)已知經(jīng)過(guò)點(diǎn)A3,﹣2)的直線交拋物線ΓM,N兩點(diǎn),經(jīng)過(guò)定點(diǎn)B3,﹣6)和M的直線與拋物線Γ交于另一點(diǎn)L,問(wèn)直線NL是否恒過(guò)定點(diǎn),如果過(guò)定點(diǎn),求出該定點(diǎn),否則說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C)的左,右焦點(diǎn)為,且焦距為,點(diǎn),分別為橢圓C的上、下頂點(diǎn),滿足.

1)求橢圓C的方程;

2)已知點(diǎn),橢圓C上的兩個(gè)動(dòng)點(diǎn)M,N滿足,求證:直線過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)若函數(shù)上是減函數(shù),求實(shí)數(shù)的取值范圍;

2)令,是否存在實(shí)數(shù),使得當(dāng)時(shí),函數(shù)的最小值是3?若存在,求出實(shí)數(shù)的值;若不存在,說(shuō)明理由;

3)當(dāng)時(shí),證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的參數(shù)方程為為參數(shù)).以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求的普通方程和的直角坐標(biāo)方程;

(2)若過(guò)點(diǎn)的直線交于,兩點(diǎn),與交于,兩點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙、丙三人在政治、歷史、地理、物理、化學(xué)、生物、技術(shù)7門學(xué)科中任選3門.若同學(xué)甲必選物理,則下列說(shuō)法正確的是(

A.甲、乙、丙三人至少一人選化學(xué)與全選化學(xué)是對(duì)立事件

B.甲的不同的選法種數(shù)為15

C.已知乙同學(xué)選了物理,乙同學(xué)選技術(shù)的概率是

D.乙、丙兩名同學(xué)都選物理的概率是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了響應(yīng)國(guó)家號(hào)召,促進(jìn)垃圾分類,某校組織了高三年級(jí)學(xué)生參與了垃圾分類,從我做起的知識(shí)問(wèn)卷作答隨機(jī)抽出男女各20名同學(xué)的問(wèn)卷進(jìn)行打分,作出如圖所示的莖葉圖,成績(jī)大于70分的為合格”.

)由以上數(shù)據(jù)繪制成2×2聯(lián)表,是否有95%以上的把握認(rèn)為性別問(wèn)卷結(jié)果有關(guān)?

總計(jì)

合格

不合格

總計(jì)

)從上述樣本中,成績(jī)?cè)?/span>60分以下(不含60分)的男女學(xué)生問(wèn)卷中任意選2個(gè),記來(lái)自男生的個(gè)數(shù)為,求的分布列及數(shù)學(xué)期望.

附:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

同步練習(xí)冊(cè)答案