分析 (1)通過(guò)$c=\sqrt{3}$、2a=2,利用a、b、c直接的關(guān)系可知a2=1、b2=2,進(jìn)而可得結(jié)論;
(2)通過(guò)聯(lián)立直線與雙曲線方程,利用韋達(dá)定理及兩點(diǎn)間距離公式計(jì)算即得結(jié)論.
解答 解:(1)∵$c=\sqrt{3}$,2a=2,
∴a=1,c2=3,a2=1,
∴b2=a2-c2=2,
故雙曲線方程為${x^2}-\frac{y^2}{2}=1$;
(2)設(shè)直線與雙曲線的交點(diǎn)為A(x1,y1)、B(x2,y2),
聯(lián)立方程$\left\{\begin{array}{l}y=x-\sqrt{3}\\{x^2}-\frac{y^2}{2}=1\end{array}\right.$,得${x^2}+2\sqrt{3}x-5=0$,
由韋達(dá)定理得$\left\{\begin{array}{l}{x_1}+{x_2}=-2\sqrt{3}\\{x_1}{x_2}=-5\end{array}\right.$,
故$|AB|=\sqrt{1+1}•\sqrt{{{(-2\sqrt{3})}^2}-4×(-5)}=8$.
點(diǎn)評(píng) 本題是一道直線與圓錐曲線的綜合題,涉及韋達(dá)定理、兩點(diǎn)間距離公式等基礎(chǔ)知識(shí),注意解題方法的積累,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{6}{7}$ | B. | $\frac{3}{7}$ | C. | $\frac{5}{7}$ | D. | $\frac{1}{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | -1 | C. | ±1 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ①② | B. | ②③ | C. | ①③ | D. | ①②③ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 25 | B. | 10 | C. | 2$\sqrt{5}$ | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com