如圖,在長方體ABCD-A1B1C1D1中,E、P分別BC、A1D1的中點,M、N分別是AE、CD1的中點,AD=AA1=1,AB=2.
(1)求證:MN∥面ADD1A1
(2)求MN與平面ABCD所成角的正切值;
(3)求三棱錐P-DEN的體積.
分析:(1)利用三角形中位線的性質,證明線面平行,從而可得面面平行,即可證明MN∥面ADD1A1;
(2)確定MN與平面ABCD所成角,再利用三角函數(shù),即可求得角的正切值;
(3)利用轉換底面方法,即可求三棱錐P-DEN的體積.
解答:(1)證明:取CD的中點K,連結MK、NK
∵M、N、K分別為AK、CD1、CD的中點
∴MK∥AD,NK∥DD1
∴MK∥面ADD1A1,NK∥面ADD1A1
∴面MNK∥面ADD1A1
∴MN∥面ADD1A1…(4分)
(2)解:由(1)知∠NMK是直線MN與平面ABCD所成的角…(5分)
NK=
1
2
MK=
1+
1
2
2
=
3
4

tan∠NMK=
NK
MK
=
2
3
…(8分)
(3)S△NEP=
1
2
S矩形ECD1P=
1
4
BC•CD1=
1
4
•a•
a2+4a2
=
5
4
a2

作DQ⊥CD1交CD1于Q,由A1D1⊥面CDD1C1得,A1C1⊥DQ
∴DQ⊥面BCD1A1
∴在Rt△CDD1中,DQ=
CD•DD1
CD1
=
2a•a
5
a
=
2
5
a

VP-DEN=VD-ENP=
1
3
S△NEP•DQ=
1
3
5
4
a2
2
5
a=
a3
6
…(14分)
點評:本題考查線面平行的判定與性質,考查面面平行,考查線面角,考查三棱錐體積的計算,考查學生分析解決問題的能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖在長方體ABCD-A1B1C1D1中,三棱錐A1-ABC的面是直角三角形的個數(shù)為:
4
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,定義八個頂點都在某圓柱的底面圓周上的長方體叫做圓柱的內接長方體,圓柱也叫長方體的外接圓柱.設長方體ABCD-A1B1C1D1的長、寬、高分別為a,b,c(其中a>b>c),那么該長方體的外接圓柱側面積的最大值等于(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若一個n面體中有m個面是直角三角形,則稱這個n面體的直度為.如圖,在長方體ABCD-A1B1C1D1中,四面體A1-ABC的直度為(    )

 

A.         B.               C.                 D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若一個n面體中有m個面是直角三角形,則稱這個n面體的直度為.如圖,在長方體ABCD-A1B1C1D1中,四面體A1-ABC的直度為(    )

 

A.            B.              C.              D.1

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011年四川省成都市高二3月月考數(shù)學試卷 題型:填空題

(文科做)(本題滿分14分)如圖,在長方體

ABCDA1B1C1D1中,AD=AA1=1,AB=2,點E在棱AB上移動.

(1)證明:D1EA1D;

(2)當EAB的中點時,求點E到面ACD1的距離;

(3)AE等于何值時,二面角D1ECD的大小為.                      

 

 

 

(理科做)(本題滿分14分)

     如圖,在直三棱柱ABCA1B1C1中,∠ACB = 90°,CB = 1,

CA =,AA1 =M為側棱CC1上一點,AMBA1

   (Ⅰ)求證:AM⊥平面A1BC;

   (Ⅱ)求二面角BAMC的大。

   (Ⅲ)求點C到平面ABM的距離.

 

 

 

 

 

查看答案和解析>>

同步練習冊答案