函數(shù)y=ax+2-2(a>0且a≠1)的圖象恒過點(diǎn)A,若點(diǎn)A在直線mx+ny+1=0上,其中mn>0,則的最小值為( )
A.4+
B.4
C.8
D.6-4
【答案】分析:由函數(shù)y=ax+1-2(a>0,a≠1)的圖象恒過定點(diǎn)A,可得A(-2,-1),點(diǎn)A在直線mx+ny+1=0上,得2m+n=1又mn>0,利用1的變換構(gòu)造出可以用基本不等式求最值的形式求最值.
解答:解:由已知定點(diǎn)A坐標(biāo)為(-2,-1),由點(diǎn)A在直線mx+ny+1=0上,
∴-2m-n+1=0,即2m+n=1,
又mn>0,∴m>0,n>0,
=()(2m+n)=4+
當(dāng)且僅當(dāng)時(shí)取等號(hào).
故答案為:8
點(diǎn)評(píng):均值不等式在應(yīng)用過程中,學(xué)生常忽視“等號(hào)成立條件”,特別是對(duì)“一正、二定、三相等條件的把握.當(dāng)均值不等式中等號(hào)不成立時(shí),常利用函數(shù)單調(diào)性求最值.也可將已知條件適當(dāng)變形,再利用均值不等式,使得等號(hào)成立.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=ax-2+2(a>0,且a≠1)的圖象必經(jīng)過點(diǎn)( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=ax+2-2的圖象恒過定點(diǎn)A,若點(diǎn)A在直線mx+ny+1=0上,其中mn>0,則
1
m
+
2
n
的最小值為
8
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=ax-2+1(a>0,且a≠1)的圖象經(jīng)過一個(gè)定點(diǎn),則該定點(diǎn)的坐標(biāo)是
(2,2)
(2,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=ax-2+2(a>0,且a≠1)的圖象一定過點(diǎn)(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=ax+2-2(a>0,a≠1)過定點(diǎn)A(x,y),且點(diǎn)A(x,y)滿足方程mx+ny+2=0(m>0,n>0),則
1
m
+
2
n
的最小值為
4
4

查看答案和解析>>

同步練習(xí)冊(cè)答案