9.△ABC中,角A,B,C所對(duì)的邊分別是a,b,c,若角A,B,C依次成等差數(shù)列,且$a=1,c=\sqrt{3}$,則S△ABC等于(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{3}{4}$

分析 由角A,B,C依次成等差數(shù)列并結(jié)合三角形內(nèi)角和公式求得B,再由三角形面積公式即可運(yùn)算求得結(jié)果.

解答 解:∵在△ABC中,由角A,B,C依次成等差數(shù)列,可得A+C=2B,
再由三角形內(nèi)角和公式求得B=$\frac{π}{3}$.
∴由于a=1,c=$\sqrt{3}$,
∴S△ABC=$\frac{1}{2}$acsinB=$\frac{1}{2}×1×\sqrt{3}×\frac{\sqrt{3}}{2}$=$\frac{3}{4}$.
故選:D.

點(diǎn)評(píng) 本題主要考查等差數(shù)列的定義和性質(zhì),三角形面積公式在解三角形中的綜合應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知m>0,p:(x+2)(x-6)≤0,q:2-m≤x≤2+m.
(1)若p是q的必要條件,求實(shí)數(shù)m的取值范圍
(2)若m=2,¬p∨¬q為假,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=4tanxsin($\frac{π}{2}$-x)cos(x-$\frac{π}{3}$)-$\sqrt{3}$.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)在[-$\frac{π}{4}$,$\frac{π}{4}$]上的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.直線l1:x+ay+3=0和直線l2:(a-2)x+3y+a=0互相平行,則a的值為(  )
A.-1或3B.-3或1C.-1D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知sinα=$\frac{3}{5}$,則cos(π-2α)=( 。
A.-$\frac{4}{5}$B.-$\frac{7}{25}$C.$\frac{7}{25}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且$\sqrt{3}$ccos A=(2b-$\sqrt{3}$a)cosC.
(1)求角C;
(2)若A=$\frac{π}{6}$,△ABC的面積為$\sqrt{3}$,D為AB的中點(diǎn),求sin∠BCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知數(shù)列{an}各項(xiàng)為正數(shù),Sn是其前n項(xiàng)和,且${s_n}=2{n^2}-30n$.求a1及an

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若雙曲線的焦點(diǎn)到漸近線的距離是焦距的$\frac{\sqrt{5}}{5}$,則該雙曲線的離心率為( 。
A.$\frac{2\sqrt{5}}{5}$B.$\frac{\sqrt{5}}{2}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.設(shè)$a=\int_0^π{sinxdx}$,則${(a\sqrt{x}+\frac{1}{x})^6}$展開(kāi)式的常數(shù)項(xiàng)為( 。
A.-20B.20C.-160D.240

查看答案和解析>>

同步練習(xí)冊(cè)答案