已知數(shù)列2,
7
,
10
13
,4,…,則2
7
是該數(shù)列的( 。
A、第7項(xiàng)B、第8項(xiàng)
C、第9項(xiàng)D、第10項(xiàng)
考點(diǎn):數(shù)列的概念及簡(jiǎn)單表示法
專題:等差數(shù)列與等比數(shù)列
分析:把數(shù)列的前5項(xiàng)寫(xiě)出來(lái)觀察規(guī)律,寫(xiě)出通項(xiàng)公式,即可求得.
解答: 解:前5項(xiàng)可寫(xiě)成
4
,
7
10
,
13
16
,
故而可歸納通項(xiàng)公式為
3n+1
,故令
3n+1
=2
7
,
∴n=9.
故選C.
點(diǎn)評(píng):本題主要考查數(shù)列的通項(xiàng)公式和數(shù)列的特點(diǎn),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)為區(qū)間[-1,1]上的增函數(shù),則滿足f(x)<f(
1
2
)的實(shí)數(shù)x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:
a-2-b-2
a-1+b-1
+(a-
1
2
-b-
1
2
)(a
1
2
-b
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=
cos(2x-
π
3
)
的導(dǎo)數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)求與曲線y=2x2-1相切且與x+4y+1=0垂直的切線方程.
(2)求曲線y=cosx在點(diǎn)A(
3
,-
1
2
)處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)i為虛數(shù)單位,則(1+i)4的值為( 。
A、4B、-4C、4iD、-4i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題:
①在區(qū)間(0,+∞)上,函數(shù)y=x-1,y=x
1
2
,y=(x-1)2,y=x3中由三個(gè)是增函數(shù);
②若logm3<logn3<0,則0<n<m<1;
③若函數(shù)f(x)是奇函數(shù),則f(x-1)的圖象觀點(diǎn)點(diǎn)(1,0)對(duì)稱;
④已知函數(shù)f(x)=
3x-2,x≤2
log3(x-1),x>2
,則方程f(x)=
1
2
有2個(gè)實(shí)數(shù)根;
⑤定義在R上的寒素y=f(x),則y=f(x-2)與y=f(2-x)的圖象關(guān)于直線x=2對(duì)稱
以上命題是真命題的是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

點(diǎn)P在
x2
9
+
y2
4
=1橢圓上,求點(diǎn)P到直線l:x+2y-10=0的最大距離及點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線C的極坐標(biāo)方程是ρ=1,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
x=2-
3
2
t
y=
1
2
t
(t為參數(shù)).
(1)寫(xiě)出直線l的普通方程與曲線C的直角坐標(biāo)方程;
(2)設(shè)曲線C經(jīng)過(guò)伸縮變換
x′=3x
y′=y
得到曲線C′,設(shè)曲線C′上任一點(diǎn)為M(x,y).求點(diǎn)M到直線l的距離的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案