已知、分別是橢圓: 的左、右焦點(diǎn),點(diǎn)在直線上,線段的垂直平分線經(jīng)過點(diǎn).直線與橢圓交于不同的兩點(diǎn),且橢圓上存在點(diǎn),使,其中是坐標(biāo)原點(diǎn),是實(shí)數(shù).
(Ⅰ)求的取值范圍;
(Ⅱ)當(dāng)取何值時(shí),的面積最大?最大面積等于多少?
(Ⅰ);(Ⅱ)當(dāng)時(shí),的面積最大,最大面積為.

試題分析:1.由于題目較長(zhǎng),一些考生不能識(shí)別有效信息,未能救出橢圓的方程求.2. 第(Ⅰ)問,求的取值范圍.其主要步驟與方法為:由,得關(guān)于、的不等式……   ①.由根與系數(shù)的關(guān)系、在橢圓上,可以得到關(guān)于、的等式……      ②.把等式②代入①,可以達(dá)到消元的目的,但問題是這里一共有三個(gè)變量,就是消了,那還有關(guān)于的不等式,如何求出的取值范圍呢?這將會(huì)成為難點(diǎn).事實(shí)上,在把等式②代入①的過程中,一起被消掉,得到了關(guān)于的不等式.解之即可.
3.第(Ⅱ)問要把的面積函數(shù)先求出來.用弦長(zhǎng)公式求底,用點(diǎn)到直線的距離公式求高,得到的面積,函數(shù)中有兩個(gè)自變量,如何求函數(shù)的最大值呢?這又成為難點(diǎn).這里很難想到把②代入面積函數(shù)中,因?yàn)棰谥泻腥齻(gè)變量,即使代入消掉一個(gè)后,面積函數(shù)依然有兩個(gè)自變量.但這里很巧合的是:代入消掉后,事實(shí)上,也自動(dòng)地消除了,于是得到了面積和自變量的函數(shù)關(guān)系,再由第(Ⅰ)中所得到的的取值范圍,利用均值不等式,即可求出面積的最大值了.
試題解析::(Ⅰ)設(shè)橢圓的半焦距為,根據(jù)題意得
 解方程組得
∴橢圓的方程為
,得
根據(jù)已知得關(guān)于的方程有兩個(gè)不相等的實(shí)數(shù)根.
,
化簡(jiǎn)得:
設(shè),則

(1)當(dāng)時(shí),點(diǎn)、關(guān)于原點(diǎn)對(duì)稱,,滿足題意;
(2)當(dāng)時(shí),點(diǎn)、關(guān)于原點(diǎn)不對(duì)稱,.
,得 即 
在橢圓上,∴,
化簡(jiǎn)得:
,∴
,
,即
綜合(1)、(2)兩種情況,得實(shí)數(shù)的取值范圍是
(Ⅱ)當(dāng)時(shí),,此時(shí),、、三點(diǎn)在一條直線上,不構(gòu)成.
∴為使的面積最大,.

.
∵原點(diǎn)到直線的距離,
的面積
,
.

,

” 成立,即
∴當(dāng)時(shí),的面積最大,最大面積為
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓經(jīng)過點(diǎn).
(Ⅰ)求橢圓的方程;(Ⅱ)設(shè)為橢圓上的動(dòng)點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,、分別是橢圓的頂點(diǎn),過坐標(biāo)原點(diǎn)的直線交橢圓于兩點(diǎn),其中在第一象限.過軸的垂線,垂足為.連接,并延長(zhǎng)交橢圓于點(diǎn).設(shè)直線的斜率為

(Ⅰ)當(dāng)直線平分線段時(shí),求的值;
(Ⅱ)當(dāng)時(shí),求點(diǎn)到直線的距離;
(Ⅲ)對(duì)任意,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的左、右焦點(diǎn)分別為、,P為橢圓 上任意一點(diǎn),且的最小值為.
(1)求橢圓的方程;
(2)動(dòng)圓與橢圓相交于A、B、C、D四點(diǎn),當(dāng)為何值時(shí),矩形ABCD的面積取得最大值?并求出其最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知為橢圓的左,右焦點(diǎn),為橢圓上的動(dòng)點(diǎn),且的最大值為1,最小值為-2.
(I)求橢圓的方程;
(II)過點(diǎn)作不與軸垂直的直線交該橢圓于兩點(diǎn),為橢圓的左頂點(diǎn)。試判斷的大小是否為定值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的兩個(gè)焦點(diǎn)分別為,且,點(diǎn)在橢圓上,且的周長(zhǎng)為6.
(I)求橢圓的方程;
(II)若點(diǎn)的坐標(biāo)為,不過原點(diǎn)的直線與橢圓相交于兩點(diǎn),設(shè)線段的中點(diǎn)為,點(diǎn)到直線的距離為,且三點(diǎn)共線.求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

為橢圓上一點(diǎn),為兩焦點(diǎn),,則橢圓的離心率        .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的左右焦點(diǎn)坐標(biāo)分別是,離心率,直線與橢圓交于不同的兩點(diǎn).
(1)求橢圓的方程;
(2)求弦的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知在平面直角坐標(biāo)系中的一個(gè)橢圓,它的中心在原點(diǎn),左焦點(diǎn)為,右頂點(diǎn)為,設(shè)點(diǎn).
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)若是橢圓上的動(dòng)點(diǎn),求線段中點(diǎn)的軌跡方程;

查看答案和解析>>

同步練習(xí)冊(cè)答案