【題目】已知函數(shù), .
(1)求函數(shù)在點(diǎn)點(diǎn)處的切線方程;
(2)當(dāng)時(shí),求函數(shù)的極值點(diǎn)和極值;
(3)當(dāng)時(shí), 恒成立,求的取值范圍.
【答案】(1);(2)的極大值,函數(shù)無(wú)極小值;(3).
【解析】試題分析:1)求出導(dǎo)函數(shù),求解切線的斜率f′(1)=1﹣a,然后求解切線方程;
(2)求出函數(shù)的極值點(diǎn),判斷函數(shù)的單調(diào)性,求解函數(shù)的極值即可;
(3)令g(x)=xlnx﹣a(x2﹣1)(x≥1),求出導(dǎo)函數(shù)g′(x)=lnx+1﹣2ax,令F(x)=g′(x)=lnx+1﹣2ax,求出,通過(guò)若a≤0,若,若,分別判斷函數(shù)的符號(hào)函數(shù)的單調(diào)性,求解函數(shù)的最值,然后求解a的取值范圍.
試題解析:
(1)由題,所以,
所以切線方程為:
(2)由題時(shí), ,所以
所以; ,
所以在單增,在單減,所以在取得極大值.
所以函數(shù)的極大值,函數(shù)無(wú)極小值
(3),令,
,令,
(1)若, , 在遞增,
∴在遞增, ,從而,不符合題意
(2)若,當(dāng), ,∴在遞增,
從而,以下論證同(1)一樣,所以不符合題意
(3)若, 在恒成立,
∴在遞減, ,
從而在遞減,∴, ,
綜上所述, 的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,ABCD是邊長(zhǎng)為3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE與平面ABCD所成角為60°.
(1)求證:AC⊥平面BDE;
(2)設(shè)點(diǎn)M是線段BD上一個(gè)動(dòng)點(diǎn),試確定點(diǎn)M的位置,使得AM∥平面BEF,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年4月23日“世界讀書日”來(lái)臨之際,某校為了了解中學(xué)生課外閱讀情況,隨機(jī)抽取了100名學(xué)生,并獲得了他們一周課外閱讀時(shí)間(單位:小時(shí))的數(shù)據(jù),整理得到數(shù)據(jù)分組及頻數(shù)分布表.
(Ⅰ)求的值,并作出這些數(shù)據(jù)的頻率分布直方圖;
(Ⅱ)假設(shè)每組數(shù)據(jù)組間是平均分布的,試估計(jì)該組數(shù)據(jù)的平均數(shù);(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(Ⅲ)現(xiàn)從第3、4、5組中用分層抽樣的方法抽取6人參加!爸腥A詩(shī)詞比賽”,經(jīng)過(guò)比賽后從這6人中選拔2人組成該校代表隊(duì),求這2人來(lái)自不同組別的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,直線平面,.
(1)求證:直線平面.
(2)若直線與平面所成的角的正弦值為,求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年4月23日“世界讀書日”來(lái)臨之際,某校為了了解中學(xué)生課外閱讀情況,隨機(jī)抽取了100名學(xué)生,并獲得了他們一周課外閱讀時(shí)間(單位:小時(shí))的數(shù)據(jù),整理得到數(shù)據(jù)分組及頻數(shù)分布表.
(1)求的值,并作出這些數(shù)據(jù)的頻率分布直方圖;
(2)現(xiàn)從第3、4、5組中用分層抽樣的方法抽取6人參加!爸腥A詩(shī)詞比賽”,經(jīng)過(guò)比賽后從這6人中選拔2人組成該校代表隊(duì),求這2人來(lái)自不同組別的概率;
(3)假設(shè)每組數(shù)據(jù)組間是平均分布的,若該校希望使15%的學(xué)生的一周課外閱讀時(shí)間不低于(小時(shí))的時(shí)間,作為評(píng)選該!罢n外閱讀能手”的依據(jù),試估計(jì)該值,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司計(jì)劃投資A、B兩種金融產(chǎn)品,根據(jù)市場(chǎng)調(diào)查與預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資量成正比例,其關(guān)系如圖1,B產(chǎn)品的利潤(rùn)與投資量的算術(shù)平方根成正比例,其關(guān)系如圖2(注:利潤(rùn)與投資量的單位:萬(wàn)元).
(1)分別將A、B兩產(chǎn)品的利潤(rùn)表示為投資量的函數(shù)關(guān)系式;
(2)該公司已有10萬(wàn)元資金,并全部投入A、B兩種產(chǎn)品中,問(wèn):怎樣分配這10萬(wàn)元投資,才能使公司獲得最大利潤(rùn)?其最大利潤(rùn)為多少萬(wàn)元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,AB⊥平面BCP,CD∥平面ABP,AB=BC=CP=BP=2CD=2
(1)證明:平面ABP⊥平面ADP;
(2)若直線PA與平面PCD所成角為α,求sinα的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近幾年,京津冀等地?cái)?shù)城市指數(shù)“爆表”,尤其2015年污染最重.為了探究車流量與的濃度是否相關(guān),現(xiàn)采集到北方某城市2015年12月份某星期星期一到星期日某一時(shí)間段車流量與的數(shù)據(jù)如表:
時(shí)間 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 | 星期七 |
車流量(萬(wàn)輛) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
的濃度(微克/立方米) | 28 | 30 | 35 | 41 | 49 | 56 | 62 |
(1)由散點(diǎn)圖知與具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程;
(2)(。├茫1)所求的回歸方程,預(yù)測(cè)該市車流量為8萬(wàn)輛時(shí)的濃度;
(ⅱ)規(guī)定:當(dāng)一天內(nèi)的濃度平均值在內(nèi),空氣質(zhì)量等級(jí)為優(yōu);當(dāng)一天內(nèi)的濃度平均值在內(nèi),空氣質(zhì)量等級(jí)為良.為使該市某日空氣質(zhì)量為優(yōu)或者為良,則應(yīng)控制當(dāng)天車流量在多少萬(wàn)輛以內(nèi)?(結(jié)果以萬(wàn)輛為單位,保留整數(shù).)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com