已知正方體ABCD-A1B1C1D1,O是底ABCD對角線的交點.求證:
(1)C1O∥面AB1D1;
(2)面BDC1∥面AB1D1
【答案】分析:(1)由題意連接A1C1,先證明A1ACC1是平行四邊形得A1C1∥AC且A1C1=AC,再證AOC1O1是平行四邊形,然后利用直線與平面平行的判定定理進(jìn)行證明;
(2)因為AB∥CD∥D′C′,加上AB=CD=D′C′,可證ABC′D′是平行四邊形,同理可證C′D∥平面AB′D′,從而求證.
解答:證明:(1)連接A1C1,設(shè)A1C1∩B1D1=O1
連接AO1,∵ABCD-A1B1C1D1是正方體
∴A1ACC1是平行四邊形
∴A1C1∥AC且A1C1=AC
又O1,O分別是A1C1,AC的中點,
∴O1C1∥AO且O1C1=AO
∴AOC1O1是平行四邊形
∴C1O∥AO1,AO1?面AB1D1,C1O?面AB1D1
∴C1O∥面AB1D1;
(2)證明:是平行四邊形,
⇒平面C′DB∥平面AB′D′.
點評:此題考查直線與平面平行的判斷及平面與平面平行的判斷,此類問題先證明兩個面平行,再證直線和面平行,這種做題思想要記。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知正方體ABCD-A1B1C1D1的棱長為2,點P在平面DD1C1C內(nèi),PD1=PC1=
2
.求證:
(1)平面PD1A1⊥平面D1A1BC;
(2)PC1∥平面A1BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正方體ABCD-A1B1C1D1中,E、F分別為BB1、CC1的中點,那么直線AE與D1F所成角的余弦值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正方體ABCD-A1B1C1D1中,E為棱CC1的動點.
(1)當(dāng)E恰為棱CC1的中點時,試證明:平面A1BD⊥平面EBD;
(2)在棱CC1上是否存在一個點E,可以使二面角A1-BD-E的大小為45°?如果存在,試確定點E在棱CC1上的位置;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正方體ABCD-A1B1C1D1,則四面體A1-C1BD在面A1B1C1D1上的正投影的面積與該四面體表面積之比是
3
6
3
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知正方體ABCD-A1B1C1D1,O是底ABCD對角線的交點.
(1)求證:C1O∥面AB1D1
(2)求異面直線AD1與 C1O所成角的大。

查看答案和解析>>

同步練習(xí)冊答案