已知點(diǎn)A(2,0),B(0,3),C(-1,-2),則平行四邊形ABCD的頂點(diǎn)D的坐標(biāo)為


  1. A.
    (1,-5)
  2. B.
    (-3,1)
  3. C.
    (1,-3)
  4. D.
    (-5,1)
A
分析:設(shè)出點(diǎn)D,利用向量的坐標(biāo)的求法求出兩個(gè)向量的坐標(biāo),再利用向量相等的坐標(biāo)關(guān)系列出方程組,求出點(diǎn)的坐標(biāo).
解答:設(shè)D(x,y)則
在平行四邊形ABCD中
=(-2,3),)=(-1-x,-2-y)
又∵=,
,
解得
則平行四邊形ABCD的頂點(diǎn)D的坐標(biāo)為(1,-5).
故選A.
點(diǎn)評(píng):本題考查向量坐標(biāo)的求法:終點(diǎn)坐標(biāo)減去始點(diǎn)坐標(biāo);向量相等的坐標(biāo)滿足的條件.根據(jù)題意找出=解題的關(guān)鍵,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(-2,0),B(2,0),若點(diǎn)P(x,y)在曲線
x2
16
+
y2
12
=1
上,則|PA|+|PB|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•朝陽(yáng)區(qū)二模)在平面直角坐標(biāo)系x0y中,已知點(diǎn)A(-
2
,0),B(
2
,0
),E為動(dòng)點(diǎn),且直線EA與直線EB的斜率之積為-
1
2

(Ⅰ)求動(dòng)點(diǎn)E的軌跡C的方程;
(Ⅱ)設(shè)過(guò)點(diǎn)F(1,0)的直線l與曲線C相交于不同的兩點(diǎn)M,N.若點(diǎn)P在y軸上,且|PM|=|PN|,求點(diǎn)P的縱坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(-2,0),B(2,0),如果直線3x-4y+m=0上有且只有一個(gè)點(diǎn)P使得 
PA
PB
=0
,那么實(shí)數(shù) m 等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系xOy中,已知點(diǎn)A(-2,0),B (0,2
3
)
,C(2cosθ,sinθ),其中θ∈[0,
π
2
]

(1)若
AB
OC
,求tanθ的值;
(2)設(shè)點(diǎn)D(1,0),求
AC
 •  
BD
的最大值;
(3)設(shè)點(diǎn)E(a,0),a∈R,將
OC
 •  
CE
表示成θ的函數(shù),記其最小值為f(a),求f(a)的表達(dá)式,并求f(a)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(-2,0)、B(0,2),C是圓x2+y2=1上一個(gè)動(dòng)點(diǎn),則△ABC的面積的最小值為
2-
2
2-
2

查看答案和解析>>

同步練習(xí)冊(cè)答案