四棱錐P-ABCD中,底面ABCD為矩形,PD⊥底面ABCD,AD=PD,E、F分別為CD、PB的中點(diǎn)。
(Ⅰ)求證:EF⊥平面PAB;
(Ⅱ)設(shè)AB=BC,求AC與平面AEF所成的角的大小。
方法一:
(Ⅰ)證明:連結(jié)EP,
∵PD⊥底面ABCD,DE在平面ABCD內(nèi),
∴PD⊥DE,又CE=ED,PD=AD=BC。
∴Rt△BCE≌Rt△PDE。
∴PE=BE。
∵F為PB中點(diǎn)!郋F⊥PB
由三垂線定理得PA⊥AB,
∴在Rt△PAB中PF=AF,又PE=BE=EA。
∴△EFP≌△EFA。
∴EF⊥FA.
∵PB、FA為面平PAB內(nèi)的相交直線。
∴EF⊥平面PAB。
(Ⅱ)解:不妨設(shè)BC=1,則AD=PD=1。
AB=,PA=,AC=
∴△PAB為等腰直角三角形,且PB=2,F(xiàn)為其斜邊中點(diǎn),BF=1,且AF⊥PB。
∵PB與平面AEF內(nèi)兩條相交直線EF、AF都垂直,
∴PB⊥平面AEF.
連結(jié)BE交AC于G,作GH∥BP交EF于H,則GH⊥平面AEF
∠GAH為AC與平面AEF所成的角。
由△EGC∽△BGA可知EC=GB,EG=EB,AG=,AC=.
由△EGC∽△EBF可知GH=BF=.
∴sin∠GAH=.
∴AC與平面AEF所成的角為arcsin
方法二:
以D為坐標(biāo)原點(diǎn),DA的長(zhǎng)為單位,建立如圖所示的直角坐標(biāo)系.
(Ⅰ)證明:
設(shè)E(a,0,0)其中a>0,則C(2a,0,0),A(0,1,0)B(2a,1,0),P(0,0,1),F(xiàn)(a,,).
=(0,,),=(2a,1,-1),=(2a,0,0)。
=0,∴EF⊥PB.
=0,∴EF⊥AB
又PB平面PAB,AB平面PAB,PB∩AB=B.
∴EF⊥平面PAB.
(Ⅱ)解:由AB=BC,得a=.
可得=(,-1,0),=(,1,-1)
,
異面直線AC、PB所成的角為arccos.
=(,-,).
∴=0,PB⊥AF.
又PB⊥EF,EF、AF為平面AEF內(nèi)兩條相交直線,
∴與平面所成的角為
即AC與平面AEF所成的角為arcsin.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
1 | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com