(a1+a2+…+am)(b1+b2+…+bn)(c1+c2+…+ck)的展開(kāi)式共有________項(xiàng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

集合A1,A2滿足A1∪A2=A,則稱(A1,A2)為集合A的一種分拆,并規(guī)定:當(dāng)且僅當(dāng)A1=A2時(shí),(A1,A2)與(A2,A1)為集合A的同一種分拆,則集合A={a,b,c}的不同分拆種數(shù)為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若集合A1、A2滿足A1∪A2=A,則稱(A1,A2)為集合A的一種拆分,并規(guī)定:當(dāng)且僅當(dāng)A1=A2時(shí),(A1,A2)與(A2,A1)為集合A的同一種拆分,則集合A={1,2}的不同拆分的種數(shù)是
9
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•佛山一模)設(shè)g(x)=ex,f(x)=g[λx+(1-λ)a]-λg(x),其中a,λ是常數(shù),且0<λ<1.
(1)求函數(shù)f(x)的極值;
(2)證明:對(duì)任意正數(shù)a,存在正數(shù)x,使不等式|
ex-1
x
-1|<a
成立;
(3)設(shè)λ1λ2R+,且λ12=1,證明:對(duì)任意正數(shù)a1,a2都有:
a
λ1
1
+a
λ2
2
λ1a1+λ2a2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若集合A1,A2滿足A1∪A2=A,則稱(A1,A2)為集合A的一種分拆,并規(guī)定:當(dāng)且僅當(dāng)A1=A2時(shí),(A1,A2)與(A2,A1)為集合A的同一種分拆,
(1)集合A={a,b}的不同分拆種數(shù)為多少?
(2)集合A={a,b,c}的不同分拆種數(shù)為多少?
(3)由上述兩題歸納一般的情形:集合A={a1,a2,a3,…an}的不同分拆種數(shù)為多少?(不必證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合S={1,2,3,4,5,6,7,8},集合A={a1,a2,a3},A⊆S,a1,a2,a3滿足a1<a2<a3且a3-a2≤5,那么滿足條件的集合A的個(gè)數(shù)為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案