已知函數(shù)f(x)=x3-3x.過(guò)點(diǎn)P(2,-6)作曲線y=f(x)的切線,求此切線的方程.
【答案】分析:欲求出切線方程,只須求出其斜率即可,故先設(shè)切點(diǎn)坐標(biāo)為(t,t3-3t),利用導(dǎo)數(shù)求出在x=t處的導(dǎo)函數(shù)值,再結(jié)合導(dǎo)數(shù)的幾何意義即可求出切線的斜率.從而問(wèn)題解決.
解答:解:∵f′(x)=3x2-3,
設(shè)切點(diǎn)坐標(biāo)為(t,t3-3t),
則切線方程為y-(t3-3t)=3(t2-1)(x-t),
∵切線過(guò)點(diǎn)P(2,-6),∴-6-(t3-3t)=3(t2-1)(2-t),
化簡(jiǎn)得t3-3t2=0,∴t=0或t=3.
∴切線的方程:3x+y=0或24x-y-54=0.
點(diǎn)評(píng):本小題主要考查直線的斜率、導(dǎo)數(shù)的幾何意義、利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程等基礎(chǔ)知識(shí),考查運(yùn)算求解能力.屬于基礎(chǔ)題.