數(shù)列{an}的各項均為正數(shù),觀察流程圖,當k=5時,S=
4
13
;當k=10時,S=
9
28
.則該數(shù)列的通項公式為
an=3n-2
an=3n-2
分析:分析程序框圖為當型循環(huán)結構,按照框圖題意分析求出當k=5、10時,S的值結合{an}是一個等差數(shù)列,設公差為d,(d≠0)求出{an}的通項即可.
解答:解:由圖知:數(shù)列an是一個等差數(shù)列,設公差為d,(d≠0)
當k=5時,S=
1
a 1a 2
+
1
a 2a 3
+
1
a 3a 4
+
1
a 4a 5
=
1
d
(
1
a 1
-
1
a 5
)

當k=10時,S=
1
a 1a 2
+
1
a 2a 3
+
1
a 3a 4
+…+
1
a 9a 10
=
1
d
(
1
a 1
-
1
a 10
)

1
d
×
a 5-a 1
a 1a 5
=
4
13
1
d
(
1
a 1
-
1
a 10
)=
9
28
解得:
a 1=1
d=3

∴an=3n-2.
故答案為:an=3n-2.
點評:本題考查程序框圖,數(shù)列的概念及簡單表示方法,數(shù)列的求和,通過對知識的熟練把握,分別進行求值,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}的各項均為正數(shù),Sn為其前n項和,對于任意n∈N*,總有2Sn=an2+an
(1)求數(shù)列{an}的通項公式;
(2)設正數(shù)數(shù)列{cn}滿足an+1=(cnn+1,(n∈N*),求數(shù)列{cn}中的最大項;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}的各項均為正數(shù),它的前n項和為Sn(n∈N*),已知點(an,4Sn)在函數(shù)f (x)=x2+2x+1的圖象上.
(1)證明{an}是等差數(shù)列,并求an;
(2)設m、k、p∈N*,m+p=2k,求證:
1
Sm
+
1
Sp
2
Sk
;
(3)對于(2)中的命題,對一般的各項均為正數(shù)的等差數(shù)列還成立嗎?如果成立,請證明你的結論,如果不成立,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}的各項均為正數(shù),Sn為其前n項和,對于任意n∈N*,總有an、Sn、(an2成等差數(shù)列.
(I)求數(shù)列{an}的通項公式;
(II)設bn=an(
1
2
)n
,數(shù)列{bn}的前n項和是Tn,求證:
1
2
Tn<2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若數(shù)列{an}的前n項和為Sn,則下列命題:
(1)若數(shù)列{an}是遞增數(shù)列,則數(shù)列{Sn}也是遞增數(shù)列;
(2)數(shù)列{Sn}是遞增數(shù)列的充要條件是數(shù)列{an}的各項均為正數(shù);
(3)若{an}是等差數(shù)列(公差d≠0),則S1•S2…Sk=0的充要條件是a1•a2…ak=0.
(4)若{an}是等比數(shù)列,則S1•S2…Sk=0(k≥2,k∈N)的充要條件是an+an+1=0.
其中,正確命題的個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•奉賢區(qū)二模)數(shù)列{an} 的各項均為正數(shù),a1=p,p>0,k∈N*,an+an+k=f(p,k)•pn
(1)當k=1,f(p,k)=p+k,p=5時,求a2,a3;
(2)若數(shù)列{an}成等比數(shù)列,請寫出f(p,k)滿足的一個條件,并寫出相應的通項公式(不必證明);
(3)當k=1,f(p,k)=p+k時,設Tn=a1+2a2+3a3+…+2an+an+1,求Tn

查看答案和解析>>

同步練習冊答案