若函數(shù)f(x)=1+
2x
2x+1
+sinx在區(qū)間[-k,k](k>0)上的值域為[n,m],則m+n
等于( 。
A.0B.1C.2D.3
∵f(x)=1+
2x
2x+1
+sinx,
∴f(-x)=1+
2-x
2-x+1
+sin(-x)=1+
1
2x+1
-sinx,
∴f(x)+f(-x)=3.①
又本題中f(x)=1+
2x
2x+1
+sinx,
在區(qū)間[-k,k](k>0)上的值域為[m,n],
即無論k取什么樣的正實數(shù)都應(yīng)有最大值與最小值的和是一個確定的值,
故可令k=1,由于函數(shù)f(x)=1+
2x
2x+1
+sinx在區(qū)間[-k,k](k>0)上是一個增函數(shù),
故m+n=f(k)+f(-k)
由①知,m+n=f(k)+f(-k)=3.
故選D.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2012•北海一模)定義一種運算(a,b)*(c,d)=ad-bc,若函數(shù)f(x)=(1,log3x)*(tan
13π
4
,(
1
5
)x)
,x0是方程f(x)=0的解,且0<x1<x0,則f(x1)的值(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=(1-
3
tanx)cosx
,0≤x<
π
2
,則f(x)的最大值為
1
1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列命題:
①函數(shù)y=sin|x|的最小正周期為π;
②若函數(shù)f(x)=log2(x2-ax+1)的值域為R,則-2<a<2;
③若函數(shù)f(x)對任意x∈R都有f(x)=-f(2-x),且最小正周期為3,則f(x)的圖象關(guān)于點(-
1
2
,0)
對稱;
④極坐標方程 4sin2θ=3 表示的圖形是兩條相交直線;
⑤若函數(shù)f(x)=(1+x)
1
x
(x>0)
,則存在無數(shù)多個正實數(shù)M,使得|f(x)|≤M成立;
其中真命題的序號是
③④⑤
③④⑤
.(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2005•普陀區(qū)一模)若函數(shù)f(x)=1-
x-3
,x∈[3,+∞)
,則方程f-1(x)=7的解是
x=-1
x=-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=1+xcos
π•x2
,則f(1)+f(2)+…+f(100)=
 

查看答案和解析>>

同步練習冊答案