已知曲線x2+2y2+4x+4y+4=0按向量a=(2,1)平移后得到曲線C.

(1)求曲線C的方程;

(2)過點(diǎn)D(0,2)的直線與曲線C相交于不同的兩點(diǎn)M、N,且MD、N之間,設(shè),求實(shí)數(shù)λ的取值范圍.

,+∞)


解析:

(1)原曲線即為(x+2)2+2(y+1)2=2,則平移后的曲線Cx2+2y2=2,

+y2=1.

(2)設(shè)Mx1,y1),Nx2,y2),則

由于點(diǎn)M、N在橢圓x2+2y2=2上,則

,消去x22得,2λ2+8λy2+8=2λ2+4λ+2,即y2=.

∵-1≤y2≤1,∴-1≤≤1.又∵λ>0,故解得λ.

λ的取值范圍為[,+∞).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線x2+2y2+4x+4y+4=0按向量a=(2,1)平移后得到曲線C.
(1)求曲線C的方程;
(2)過點(diǎn)D(0,2)的直線與曲線C相交于不同的兩點(diǎn)M、N,且M在D、N之間,設(shè)
DM
MN
,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀問題:“已知曲線C1:xy+2x+2=0與曲線C2:x-xy+y+a=0有兩個(gè)公共點(diǎn),求經(jīng)過這兩個(gè)公共點(diǎn)的直線方程.”
解:曲線C1方程與曲線C2方程相加得3x+y+2+a=0,這就是所求的直線方程.
若曲線x2+2y2=1與曲線3y2=ax+b有3個(gè)公共點(diǎn),且它們不共線,則經(jīng)過這3個(gè)公共點(diǎn)得圓的方程是
3x2+3y2+ax+b-3=0
3x2+3y2+ax+b-3=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2004年廣東省廣州市高考數(shù)學(xué)一模試卷(解析版) 題型:解答題

已知曲線x2+2y2+4x+4y+4=0按向量a=(2,1)平移后得到曲線C.
(1)求曲線C的方程;
(2)過點(diǎn)D(0,2)的直線與曲線C相交于不同的兩點(diǎn)M、N,且M在D、N之間,設(shè),求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2006年高考第一輪復(fù)習(xí)數(shù)學(xué):5.3 兩點(diǎn)間距離公式、線段的定比分點(diǎn)與圖形的平移(解析版) 題型:解答題

已知曲線x2+2y2+4x+4y+4=0按向量a=(2,1)平移后得到曲線C.
(1)求曲線C的方程;
(2)過點(diǎn)D(0,2)的直線與曲線C相交于不同的兩點(diǎn)M、N,且M在D、N之間,設(shè),求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案