已知x=0是函數(shù)f(x)=(x2+ax+b)ex(x∈R)的一個極值點,且函數(shù)f(x)的圖象在x=2處的切線的斜率為2e2
(Ⅰ)求函數(shù)f(x)的解析式并求單調(diào)區(qū)間.
(Ⅱ)設g(x)=,其中x∈[-2,m],問:對于任意的m>-2,方程g(x)=(m-1)2在區(qū)間(-2,m)上是否存在實數(shù)根?若存在,請確定實數(shù)根的個數(shù).若不存在,請說明理由.
【答案】分析:(Ⅰ)由x=0是函數(shù)f(x)=(x2+ax+b)ex(x∈R)的一個極值點,f(0)=0,得到關于a,b的一個方程,函數(shù)f(x)的圖象在x=2處的切線的斜率為2e2,f(2)=2e2;得到一個關于a,b的一個方程,解方程組求出a,b即可;(Ⅱ)把求得的f′(x)代入g(x),方程g(x)=(m-1)2在區(qū)間(-2,m)上是否存在實數(shù)根,轉化為求函數(shù)g(x)在區(qū)間(-2,m)上的單調(diào)性、極值、最值問題.
解答:解:(I)f(x)=[x2+(a+2)x+a+b]ex
由f(0)=0得b=-a∴f(x)=[x2+(a+2)x]ex
又f(2)=2e2
∴[4+2(a+2)]e2=2e2
故a=-3
令f(x)=(x2-x)ex≥0得x≤0或x≥1
令f(x)=(x2-x)ex<0得0<x<1
故:f(x)=(x2-3x+3)gx,單調(diào)增區(qū)間是(-∞,o],[1,+∞),單調(diào)減區(qū)間是(0,1).
(Ⅱ)解:假設方程g(x)=在區(qū)間(-2,m)上存在實數(shù)根
設x是方程的實根,
,從而問題轉化為證明方程
在(-2,m)上有實根,并討論解的個數(shù)
因為=,,
所以
①當m>4或-2<m<1時,h(2)-h(m)<0,所以h(x)=0在(-2,m)上有解,且只有一解
②當1<m<4時,h(-2)>0且h(m)>0,但由于,
所以h(x)=0在(-2,m)上有解,且有兩解
③當m=1時,h(x)=x2-x=0⇒x=0或x=1,所以h(x)=0在(-2,m)上有且只有一解;
當m=4時,h(x)=x2-x6=0⇒x=-2或x=3,
所以h(x)=0在(-2,4)上也有且只有一解,
綜上所述,對于任意的m>-2,方程g(x)=在區(qū)間(-2,m)上均有實數(shù)根
且當m≥4或-2<m≤1時,有唯一的實數(shù)解;當1<m<4時,有兩個實數(shù)解.
點評:考查函數(shù)在某點取得極值的條件和導數(shù)的幾何意義,求函數(shù)f(x)的解析式體現(xiàn)了方程的思想;方程根的個數(shù)問題轉化為求函數(shù)的最值問題,體現(xiàn)了轉化的思想方法,再求函數(shù)最值中,又用到了分類討論的思想;屬難題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知x=0是函數(shù)f(x)=(x2+ax+b)ex(x∈R)的一個極值點,且函數(shù)f(x)的圖象在x=2處的切線的斜率為2e2
(Ⅰ)求函數(shù)f(x)的解析式并求單調(diào)區(qū)間.
(Ⅱ)設g(x)=
f′(x)ex
,其中x∈[-2,m],問:對于任意的m>-2,方程g(x)=(m-1)2在區(qū)間(-2,m)上是否存在實數(shù)根?若存在,請確定實數(shù)根的個數(shù).若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x=0是函數(shù)f(x)=(x2+bx)ex的一個極值點.
(1)求f(x);
(2)若不等式f(x)>ax3在[,2]內(nèi)有解,求實數(shù)a的取值范圍;
(3)函數(shù)y=f(x)在x=an(an>0,n∈N*)處的切線與x軸的交點為(an-an+1,0).若a1=1,bn=
1an
+2,問是否存在等差數(shù)列{cn},使得b1c1+b2c2+…+bncn=2n+1(2n-1)+n2+2n+2對n∈N*都成立?若存在求出{cn}的通項公式,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2009年廣東省韶關市高考數(shù)學二模試卷(理科)(解析版) 題型:解答題

已知x=0是函數(shù)f(x)=(x2+ax+b)ex(x∈R)的一個極值點,且函數(shù)f(x)的圖象在x=2處的切線的斜率為2e2
(Ⅰ)求函數(shù)f(x)的解析式并求單調(diào)區(qū)間.
(Ⅱ)設g(x)=,其中x∈[-2,m],問:對于任意的m>-2,方程g(x)=(m-1)2在區(qū)間(-2,m)上是否存在實數(shù)根?若存在,請確定實數(shù)根的個數(shù).若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知x=0是函數(shù)f(x)=(x2+bx)ex的一個極值點.
(1)求f(x);
(2)若不等式f(x)>ax3在[,2]內(nèi)有解,求實數(shù)a的取值范圍;
(3)函數(shù)y=f(x)在x=an(an>0,n∈N*)處的切線與x軸的交點為(an-an+1,0).若a1=1,bn=
1
an
+2,問是否存在等差數(shù)列{cn},使得b1c1+b2c2+…+bncn=2n+1(2n-1)+n2+2n+2對n∈N*都成立?若存在求出{cn}的通項公式,若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案