精英家教網 > 高中數學 > 題目詳情

已知f(x)=2+log3x,x∈[1,9],求y=[f(x)]2+f(x2)的最大值及y取最大值時x的值.

答案:
解析:

  思路分析:要求函數y=[f(x)]2+f(x2)的最大值,要做兩件事,一是要求其表達式;二是要求出它的定義域,然后求值域.

  解:∵f(x)=2+log3x,

  ∴y=[f(x)]2+f(x2)=(2+log3x)2+2+log

 。(2+log3x)2+2+2log3x

  =log32x+6log3x+6

 。(log3x+3)2-3.

  ∵函數f(x)的定義域為[1,9],

  ∴要使函數y=[f(x)]2+f(x2)有定義,就需

  ∴1≤x≤3.∴0≤log3x≤1.

  ∴6≤y=(log3x+3)2-3≤13.

  ∴當x=3時,函數y=[f(x)]2+f(x2)取最大值13.

  說明:本例正確求解的關鍵是:函數y=[f(x)]2+f(x2)定義域的正確確定.如果我們誤認為[1,9]是它的定義域,則將求得錯誤的最大值22.

  其實我們還能求出函數y=[f(x)]2+f(x2)的值域為[6,13].


練習冊系列答案
相關習題

科目:高中數學 來源:湖南省長沙市一中2010屆高三上學期第二次月考(數學理) 題型:022

已知函數f(x)=,直線l:9x+2yc=0,當x∈[-2,2]時,函數yf(x)圖象恒在直線l的下方,則c的取值范圍是________

查看答案和解析>>

科目:高中數學 來源:重慶市重慶一中2012屆高三9月月考數學理科試題 題型:044

若存在實數k和b,使得函數f(x)與g(x)對其定義域上的任意實數x分別滿足:f(x)≥kx+b和g(x)≤kx+b,則稱直線l:y=kx+b為f(x)與g(x)的“和諧直線”.已知h(x)=x2,(x)=2elnx,(e為自然對數的底數);

(1)F(x)=h(x)-(x)的極值;

(2)函數h(x)和(x)是否存在和諧直線?若存在,求出此和諧直線方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:2012年陜西省高二下期第一次月考理科數學試卷(解析版) 題型:解答題

已知函數f(x)=x3-3x及y=f(x)上一點P(1,-2),過點P作直線l.

(1)求使直線l和y=f(x)相切且以P為切點的直線方程;

(2)求使直線l和y=f(x)相切且切點異于P的直線方程.

 

查看答案和解析>>

科目:高中數學 來源:新課標高三數學導數專項訓練(河北) 題型:解答題

已知函數f(x)=x3-2x2+ax(x∈R,a∈R),在曲線y=f(x)的所有切線中,有且僅有一條切線l與直線y=x垂直.

(1)求a的值和切線l的方程;

(2)設曲線y=f(x)上任一點處的切線的傾斜角為θ,求θ的取值范圍

 

查看答案和解析>>

科目:高中數學 來源:2010-2011學年甘肅省天水市高三第六次檢測數學文卷 題型:解答題

(12分)已知動點P到定點F (, 0 ) 的距離與點 P 到定直線 l:x=2 的距離之比為。

(1)求動點P的軌跡C的方程;

(2)設M、N是直線l上的兩個點,點E是點F關于原點的對稱點,若·=0,

    求 | MN | 的最小值。

 

查看答案和解析>>

同步練習冊答案