如圖,在五面體ABCDEF中,四邊形ABCD是矩形,DE⊥平面ABCD.

(1)求證:AB∥EF;
(2)求證:平面BCF⊥平面CDEF.
(1)詳見解析,(2)詳見解析.

試題分析:(1)證明線線平行,一般思路為利用線面平行的性質(zhì)定理與判定定理進(jìn)行轉(zhuǎn)化. 因?yàn)樗倪呅蜛BCD是矩形,所以AB∥CD,因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045117407472.png" style="vertical-align:middle;" />平面CDEF,平面CDEF,所以AB∥平面CDEF.因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045117439428.png" style="vertical-align:middle;" />平面ABFE,平面平面,所以AB∥EF.(2)證明面面垂直,一般利用其判定定理證明,即先證線面垂直. 因?yàn)镈E⊥平面ABCD,平面ABCD,所以DE⊥BC.因?yàn)锽C⊥CD,,平面CDEF,所以BC⊥平面CDEF.因?yàn)锽C平面BCF,平面BCF⊥平面CDEF.
【證】(1)因?yàn)樗倪呅蜛BCD是矩形,所以AB∥CD,
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045117407472.png" style="vertical-align:middle;" />平面CDEF,平面CDEF,
所以AB∥平面CDEF.         4分                             
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045117439428.png" style="vertical-align:middle;" />平面ABFE,平面平面
所以AB∥EF.                                                7分
(2)因?yàn)镈E⊥平面ABCD,平面ABCD,
所以DE⊥BC.                                                9分
因?yàn)锽C⊥CD,,平面CDEF,
所以BC⊥平面CDEF.                                        12分
因?yàn)锽C平面BCF,平面BCF⊥平面CDEF.                   14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(13分)(2011•廣東)如圖所示的幾何體是將高為2,底面半徑為1的直圓柱沿過軸的平面切開后,將其中一半沿切面向右水平平移后得到的,A,A′,B,B′分別為的中點(diǎn),O1,O1′,O2,O2′分別為CD,C′D′,DE,D′E′的中點(diǎn).

(1)證明:O1′,A′,O2,B四點(diǎn)共面;
(2)設(shè)G為A A′中點(diǎn),延長A′O1′到H′,使得O1′H′=A′O1′.證明:BO2′⊥平面H′B′G

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

定理:如果一條直線和一個(gè)平面平行,經(jīng)過這條直線的平面和這個(gè)平面相交,那么這條直線就和兩平面的交線平行.
請(qǐng)對(duì)上面定理加以證明,并說出定理的名稱及作用.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐SABCD的底面是正方形,每條側(cè)棱的長都是底面邊長的倍,P為側(cè)棱SD上的點(diǎn).

(1)求證:AC⊥SD;
(2)若SD⊥平面PAC,求二面角PACD的大小;
(3)在(2)的條件下,側(cè)棱SC上是否存在一點(diǎn)E,使得BE∥平面PAC.若存在,求SE∶EC的值;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知直線l⊥平面α,直線m?平面β,有下面四個(gè)命題:①α∥β⇒l⊥m;②α⊥β⇒l∥m;③l∥m⇒α⊥β;④l⊥m⇒α∥β.
其中正確的命題(  )
A.①②B.②④C.①③D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點(diǎn)分別是正方體的棱的中點(diǎn),點(diǎn)分別是線段上的點(diǎn),則滿足與平面平行的直線有(   )
A.0條B.1條C.2條D.無數(shù)條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)m、n是兩條不同的直線,、是兩個(gè)不同的平面,則
A.若m//,n//,則m//nB.若m//,m//,則//
C.若m//n,m,則nD.若m//,則m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

空間四邊形ABCD中,若,則所成角為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)m,n是平面內(nèi)的兩條不同直線,l是平面外的一條直線,則的(     )
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案